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PREFACE.

It has ever been expected of an author, that in

presenting himself to the notice of the public, he

should state his claims to the attention he seems to

solicit, and afford the means ofjudging how far it is

likely to be rewarded. Anticipating these reason-

able expectations, he endeavours to satisfy them by

a declaration of the motives which may have led to

the undertaking, or influenced his judgment respect-

ing any peculiarity of plan or execution, by which

his work may be distinguished. By aff'ording this

satisfaction to others, he also consults for his own

interest or reputation ; being well aware, that it is

only by a due regard to the particular ends and ob-

jects of the writer, it can be ascertained whether his

efforts are called for, his methods well chosen ; or,

even after the perusal, whether the work itself is

fairly executed. This first duty to the public and

b 2



VIU PREFACE.

liimself, the writer of the following Treatise shall

endeavour to discharge as well as he is able.

Having been called to the chair of Natural

Philosophy in the University of Dublin, he naturally

felt it to be peculiarly his duty, in addition to his

course of public lectures, to furnish a manual for the

instruction of the students in his own department

;

the work long in their hands, consisting of lectures

formerly delivered by Professor Helsham, being ex-

tremely imperfect, even as a system of Statics, to

which branch it is almost exclusively devoted. In

making this remark, it is not intended to cast any

imputation on the memory of that writer. His

volume conveys, in the most clear and familiar style,

nearly all that was known on the subject when it

first appeared. But whatever may be its peculiar

merits, he who is aware of the vast improvements

which have been made in the establishment and de-

velopment of the principles of Mechanical Philoso-

phy, needs only to be informed, that the work here

spoken ofappeared at the beginning ofthe eighteenth,

and was probably written before the close of the

seventeenth, century; and it is presumed that he

will deem it unnecessary to inquire whether it con-

tains, or not, a course of elementary instruction fitted

for the present age.
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Some attempt to supply the deficiency bad in-

deed been made by the late Bishop Hamilton, author

of a work on Conic Sections, fit to be placed beside

the most finished productions of the ancient Geome-

ters. But Natural Philosophy is chiefly of recent

growth ; and Elementary Treatises are the latest

which arrive at perfection. During the progress of

science, the task of its cultivators is that of ex-

ploring some region of vast extent : and it is not

until their discoveries shall have swelled so as to

approximate, that the whole can be combined into

one continuous system. It is not, therefore, detract-

ing from the merited reputation of that writer to as-

sert, that the four supplementary lectures, first pub-

lished about fifty years ago, are now only fitted to

satisfy the curious as to the state of the science at

that period.

Such was the acknowledged character of the

manuals from which the students were to be in-

structed in this department of science : and the

tutors, generally too much occupied in the discharge

of their laborious duties to engage in a work for

which some leisure was essentially requisite, con-

tented themselves with supplying the deficiency of

written treatises by the oral instruction of their
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the author in this view, will also agree with him in

supposing, that as the present attempt was not un-

called for, the only charge which can lie against him

must relate to the quality of the work which he pro-

poses to substitute for those already in use. For

this indeed he has some apologies to offer, and a

large share of indulgence to solicit. Such he hopes

will not be withheld, when the purposes for which

the work was more particularly intended are con-

sidered. Some explanation of these purposes may

be requisite for the stranger to the plan of education

adopted in the Dublin University. He is to be in-

formed, that whilst it invites by honors to the highest

attainments, and provides the most able assistance

for those who may be so allured, it forbears from

compelling attention to the subjects of its instruc-

tions beyond very moderate limits. The sound dis-

cretion manifested in this treatment of the younger

members, is chiefly conspicuous in what relates to

their mathematical studies. In a course ofacademic

instruction, by which the youth of the country are

to be qualified for the various professional duties of

active life, and, therefore, necessarily embracing a

considerable variety of subjects, it was not to be

proposed that all should become profound mathe-
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maticians. Neither could it be deemed expedient to

interfere with the tastes of individuals, by which they

may be directed into some other of the many walks

of literature, perhaps equally useful, and certainly

to many minds more inviting. In a society so diver-

sified by tastes and objects, the number of those who

do not enter on the higher branches of Mathematics

must, at all times, be considerable. The qualifica-

tions of such, as well as of those of higher attain-

ments among the students of the University, were

necessarily to be attended to in a work proposed for

their general use. Accordingly, in the following

Treatise, the mathematical reasoning is sparingly

resorted to, and as much as possible confined to the

mere elements. Writing under these restrictions,

and, in a certain degree, obliged to forego the aids

peculiarly adapted to the science here treated of,

the writer is apprehensive that he may have af-

forded to the mathematical reader some ground of

complaint
;
yet it is to be hoped that he will not be

dissatisfied with those sections which are more par-

ticularly intended for his perusal.

Such were the views of the author, and such the

modifications of character which he has endeavoured

to give to his performance. Should it be favourably
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received by the University, as a work suited to the

purposes for which it was intended, he shall feel

encouraged to complete what is now done by the

addition of a second volume : and for the judgment

whereby it is to be decided, whether he is to pro-

ceed, or here to close his labours, he waits with

some anxiety.

After explaining his views to the reader, the next

duty of an author is to offer some acknowledgments

for the aids he may have derived from his predeces-

sors. Yet much in this way cannot be required

from the writer of an Elementary Treatise, where

there is little room for any pretension to originality.

Most works of merit, wherein the writer could ex-

pect to find any thing connected with his subject, he

has consulted j and by many of them he has profited.

Among those to whom he is most largely indebted is

Poinsot, whom he has followed by the adoption of

his theory of couples, and his use of that doctrine for

the establishment of the conditions of equilibrium.

To this name must be added that of Poisson, an au-

thor not less remarkable for the depth of his views

than for the elegance with which he unfolds them.

January, 1835.



ADVERTISEMENT

FOR THE SECOND EDITION.

The writer of the following pages had indulged the

hope of completing this work on Mechanical Philosophy

by the addition of another volume, before that a second

edition of the first could be demanded. That hope has

been frustrated by the engrossing duties of the situation

to which he has been in the mean time called. The

gentlemen for whose use it was chiefly intended, being

aware of the nature and extent of his other engage-

ments, will readily believe that he has done as much in

this way as present circumstances would permit, by re-

vising the work so far as it has been already accom-

plished, and which he now presents to them with seve-

ral corrections, and such further improvements as were

deemed compatible with the plan of the work.
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INTRODUCTION.

The systems of matter which constitute this globe

are ever liable to changes, with respect to their charac-

teristic properties, their figures and motions ; and it is to

the observation of the influences, by which these changes

are effected, that man is indebted for the foresight with

which he anticipates the results of natural operations,

and for the skill with which he avails himself of the va-

rious capabilities of matter. The processes which are

constantly before his view, or those which are casually

offered to his notice, would be the foundation of his first

theories ; and they would also furnish the light, for the

direction of his earliest efforts, towards the improvement

of his condition; for he would have only to subject the

bodies at his disposal, to the same influences, in order to

have the same results.

But the aim of the philosopher is not the servile

imitation of nature ; neither is the knowledge to which

he aspires, limited to that of her most obvious proceed-

ings. The actual operations of nature, are indeed the

c
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subjects of his attentive observation ; but he finds it re-

quisite, by experimental investigation, greatly to enlarge

the catalogue of these operations, when he attempts to

discover the laws by which they are conducted, or the

powers by which they are effected. Such is the scope

of his endeavours ; and having attained this point, he is

enabled to anticipate the consequences of conditions,

which nature had never presented ; or of those, to which

he is, himself, at liberty to subject the systems ofmatter

placed at his disposal.

But the reward of his labours is not withheld, until

the end of his researches is fully attained by him.

Every step by which he advances leads him to more en-

larged views of the power and wisdom of the Great

Author and Contriver of all things, and of his provident

concern for the well being of his Creation ; and for

every step, he is rewarded by an enlargement of his own

power, over that world, which his Creator hath put un-

der his dominion.

To trace his progress in this course, would be to

write a history of the arts and sciences. The purpose

of this introductory chapter, is to mark the subject

treated of in those which follow : for the field of philo-

sophical inquiry being of such vast extent, it is obviously

requisite that it should be divided into separate com-

partments ; and this division is the same with that of the

phenomena to be considered.

Of these phenomena, the changes which occur In

bodies as to rest and motion, constitute one important

class ; and the consideration of these changes, together
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with that of their external causes, belongs to that de-

partment of Science, denominated Mechanical Phi-

losophy.

We have spoken of these changes as being the ef-

fects of the actions of certain powers external to the

bodies themselves ; and without, for the present, decid-

ing the question, whether there is in matter any innate

tendency to rest or motion, to which such changes

of condition might in certain cases be ascribed, it is

obviously certain, that they are often the effects of ex-

ternal influences. We know that motion is frequently

produced by an act of the will ; and then as we are

conscious of an effort which we designate by the name

of force, so when the like effect is produced by any

other external influence, it is natural to extend to that

influence, the name with which we are already so fa-

miliar ; and this we do, without intimating that there is

any analogy whatever, between the powers exerted in

the two cases. By the word force in mechanical philo-

sophy, we denote, merely, the external cause of the

change of condition as to rest or motion, without af-

fecting to convey any notion of the more intimate

nature of the energy so exerted : and happily, this

acquaintance with the intimate nature of the force is not

requisite for our present purpose ; for in the investiga-

tion ofthe effects of certain powers, it is plainly unneces-

sary that we should know how they come to reside in tlie

bodies by which they seem to be exerted ; or even whe-

ther they actually do reside in those bodies. Thus when a

bar of iron is disturbed on the approach of a magnetized

c2
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needle, it is possible that the efficient cause of the dis-

turbance may not reside in the needle ; the presence of

this latter, for aught we know, may be nothing more

than a condition, according to which, something exter-

nal to the needle is brought into action ; and when we

speak of the energy of the needle, it is not to be su}>

posed that we intimate any opinion on a subject, with

which we have no concern in this branch of philosophy.

Nay in our investigations, we leave out much of what is

discoverable, or even already known, respecting these

forces. Certain bodies, under particular excitement,

are known to exert such influences on other bodies ; yet

the peculiar properties of such bodies, or the methods

by which these powers are called into action, are here

overlooked, as not pertaining to the subject of abstract

mechanics.

It must not, however, be supposed, that our specu-

lations, because of their abstractedness, are incapable of

any useful application. We should derive but little be-

nefit from the force of wind or water, did we not know

how to vary, at pleasure, the magnitude and direction of

the impression to be received from it : how to direct a

force against an obstacle capable of sustaining it, and

how to economize the effiart by which this is to be ef-

fected : how to modify the motion, which is the effect

of the force, to convert reciprocating into rotatory mo-

tion, and vice versa ; and of the elements of motion,

which are the mass and its velocity, how to augment

either, at the expense of the other.

But the value of mechanical philosophy is to be esti-
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mated, not merely by the light it affords, as to the dis-

posal of the forces at our command : for by establishing

the connexion between motions and forces, in all their

modes of application, it enables us to ascend, from the

motions observed in the celestial bodies, to the forces

by which they are animated ; and showing how to dis-

cover their intensities, and laws of action, to follow them

in all their consequences, past, present, and future, of

which, many w^ould have otherwise eluded our keenest

observation. It is thus that Physical Astronomy has

become a science, scarcely yielding, in evidence, to ab-

stract mathematics. The planetary system is, therein,

regarded as a vast machine, which exhibits to our ob-

servation, the effects of the forces, by which these bo-

dies are mutually influenced : and having traced up the

apparent to the real motions, and these to the forces by

which the whole is enlivened, we become possessed of

the principle, from which we are enabled to derive, not

only the motions actually observed, but all that shall

occur, for ages to come, among the various bodies of

this vast assemblage.

To manifest the importance of the science of Theo-

retic Mechanics, it is sufficient to point to the fruits it

has borne in Physical Astronomy, and in Practical Me-

chanics, of which, the former enlarges, so wonderfully,

our conceptions of the power and wisdom of the Crea-

tor ; whilst the latter extends, in a manner no less won-

derful, the power of man himself over the materials of

this globe, which he was given to inhabit and com-

manded to cultivate. And it is manifest, that if ever
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he shall attahi to the same knowledge of the forces by

which the other operations of nature are conducted, and

to the same skill in applying them to his uses, it is to

experimental investigation, guided and illustrated by

Theoretic Mechanics, that he must be indebted for this

further advancement.

To return from this digression ; the problems to be

solved in this branch of science, are such as the follow-

ing. " To determine the conditions of equilibrium

among forces simultaneously applied. To ascertain the

force which results from their actions when unbalanced

;

i. e. the energy and direction, with which the body is

effectively impelled ; or conversely, to resolve a given

force, into other forces from whose combined actions it

would result. To deduce the motions which would fol-

low from the action of certain forces applied under cer-

tain conditions; or on the contrary, to trace back cer-

tain motions to the forces by which they are produced."

With respect to the forces concerned in such questions

as these, there are but three particulars which claim our

attention, viz. : 1. The intensity of the force; 2. Its

point of application ; 3. Its direction : and it is now

to be shewn how these things are estimated and desig-

nated.

1 . With respect to intensity, it is obvious that there

are two ways of comparing forces, viz. ; by means of the

motions which are the effects of their unobstructed ac-

tions ; and immediately, by opposing the forces to each

other. Each of these methods shall be applied in its

proper place ; but it is evident that we should begin
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with that which is the more simple, and such is the me-

thod of immediate comparison. The other method

of estimating the energy of forces proceeds on certain

physical principles, which therefore are to be pre-

viously established by experience. Thus ; before that

motion or change of motion, can be regarded as the

measure of force, it must be proved that there is in

matter, no innate tendency to rest or motion ; and

therefore, that every change in this respect, is to be

ascribed to some external influence.

Again : though the motion, and consequently the

velocity acquired by a body, is the effect of the force

applied, and of that exclusively, yet the same thing may

be asserted of the square, the cube, or of any other func-

tion of the velocity; and which of these functions is to

be regarded as the measure of the force, is a question

which experience alone can determine.

Further : in estimating the energy of causes by

their effects, all the circumstances which influence the

results, should be taken into account. If then force is

to be measured by the quantity of motion produced by

it, we must consider what circumstances, besides the in-

tensity of the force, are concerned in this effect ; and

it will immediately occur, that time and space are so

concerned. A force, however great, must continue to

act during some portion of time, however short, and

through some part of space, however small, in order to

produce any motion whatever. Wherefore, in estimat-

ing the energy of the force by the motion produced, it

would seem necessary to take into account, the time or
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space througli which the action is continued. Whether

then, for the measure of the force, are we to take the

motion generated by its action through a given space,

or during a given time ; and in comparing the energies

of two forces, how are we to ascertain which is the cir-

cumstance that fixes the parity of condition with respect

to their actions ?

Such questions may be further multiplied, and they

must all be solved, before we attempt to measure the

force by the motion produced. In the mean time, we

know that two forces are equal, which by acting on the

same material point, in opposite directions, are in equi-

librio : and that two equal forces, acting in the same di-

rection, constitute a double, three a triple force, &c. :

and this is quite sufficient for our purpose, when forces

only are contemplated, and until we come to treat ofthe

motions, which they are fitted to produce.

And here it is to be observed, that whatever method

is taken for the measurement of force, all our estimates

are comparative. This observation is applicable to

-quantities of whatever kind : our notion of the mag-

nitude of any quantity is merely the notion of the

relation which it bears to some other of the same kind

:

for which reason, forces may be represented by quan-

tities of any other kind, the designation being under-

stood to be only of relative magnitudes. By this

commutation, much is gained, when the quantities

employed are more distinctly conceived, more clearly

expressed, or more easily exhibited, than those for

which they are substituted: and it is evident that
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numbers and lines are recommended by these advan-

tages. Further; this comparative estimate is most

readily carried on, by referring the quantities of each

kind, to some fixed standard. Such a standard of

comparison is unity among numbers : and if in the

same way, we fix on some certain force as the unit of

forces, then any force whatsoever, shall be expressed

simply by the number, which is to unity, in the same

ratio, as the force in question to the unit of forces.

Li the like manner, by fixing on the linear unit, to

which all other lines are to be compared, any force

shall be represented simply by the line, which bears to

the linear unit, the same ratio, as the force in question

bears to the unit of force.

It is by this substitution of the more abstract quan-

tities for forces, that the latter are brought within the

province of mathematics.

2. The point of application being a point of space,

may be immediately exhibited to the eye, and it has

its algebraical designation, by reference to three co-

ordinate axes or planes, as in analytic geometry.

3. The direction of the force is the same with that

of the line which the material point would be made to

describe, if it were free to obey the impression. Ac-

cordingly, a line will serve to exhibit the direction of

a force, as well as to represent its magnitude. Now

when a right line passes through a given point, its

direction may be determined by means of the angles

which it makes with three coordinate axes : and as this

is the method most frequently adopted in the following
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pages, it seems proper, in this place, to offer some ex-

planation of the principle, and of the manner in which

it is applied.

Let Aor, Ay, a^, (Fig. 1.) be three rectangular

axes, meeting at A, a point in the right line whose

direction is to be determined. Let this line be a??z,

and let «, p, 7, denote the angles mkx, mky, mAz,

which the line Am makes with these axes. Now if the

angle a is given, the position of the line Am, is limited

to the surface of a cone whose axis is a^t, and whose

vertical angle is 2«. If |3 is given, it is in like manner,

limited to another conical surface, whose axis is a^,

and whose vertical angle 2|3. Wherefore, if both a,

and (3 are given, the line Am is formed by the inter-

section of these two surfaces. But there are two such

lines of intersection lying in a plane which contains az,

and making equal angles with the perpendicular plane

2/A.v, and therefore making with az, angles whose sum

is 180°. The angle y, when given, determines the

line to one of these intersections.

Hence it is evident, that we are not at liberty to

assign to these angles any magnitudes we please, and

then require the position of the line from such data.

In fact, the angle a being assumed, the angle (3 must

be assigned between the limits 90° -fa and 90°— a;

and this condition being observed, with respect to two

angles, the third angle 7 is restricted to a certain angle,

or its supplement.

In order to perceive more clearly, the relations by

which the angles «, (3, y are connected, and by which
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we are, therefore, restricted in the choice of them,

when from such data we proceed to ascertain the po-

sition of the line ; it will be convenient to reverse the

process, by regarding the line Am as given. Then if

a parallelopiped is constructed, having this line for its

diagonal, and for its angle, the solid angle a, made by

the three axes, it is evident that the three linear sides,

AB, AC, AD, are determined by the perpendiculars let

fall from the point m on each of the axes, and that their

magnitudes may be expressed by means of the angles as

follows :

AB= Am.COS.a. ACZT A?;i.C0S.p. ADZZ A7>l.C0S.y.

Further ; the square of the diagonal being equal

to the sum of the squares of the sides, we have

Am*(ii:AB'-{-Ac'-|-AD*)=Am*(cos'.a+cos*.|3-|-cos''.y)

;

giving,

cos*, a-f-cos''. i3-|-cos*.y=r 1,

which expresses the condition to be observed, in assign-

ing the magnitudes of the angles, when the position of

the line is sought from these data.

With respect to the first angle «, there is no limi-

tation, inasmuch as the square of the cosine of an angle

cannot exceed unity ; but the angle a being assigned,

(3 must be such, that cos*.a-|-cos*.|3 shall not exceed

unity ; i. e. (3 must not be greater than 90°-f-«> or less

than 90°—a, its supplement.

When j3 is taken at either of these limits, we have

cos*.a-j-cos*.(3— 1 : and therefore, cos*.y— 0, or yi=

90°. When a and |3 are both given, the value of
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cos*.y, is 1—(cos*.a-f-cos*. j3). and y is one or other

of the supplemental angles, whose cosines are

-f- V(l—cos*, a—cos*.|3), and

—

\/(l—cos*. a—cos*.j3).

If the cosine of any of the three angles is negative,

that angle is obtuse, and this circumstance renders the

designation by cosines, peculiarly explicit, the signs

prefixed, serving to identify, among the eight solid

angles contained by the three coordinate planes, that

which contains the line Am. Thus if cos. a is negative,

the line Am. falls at the side of the plane za?/ opposite

to that in which it should have been found, had the

cosine of that angle been affirmative, i. e. the abscissae

taken in the direction of a^, being deemed affirmative,

the lines Am, ajt, in the case here supposed, lie at

opposite sides of the plane zAy. The same is to be

observed with respect to the cosine of the angle j3 and

the plane zAx^ and of the cosine of the angle y and the

plane ,vAy.

If the line is in a given plane, two axes will be

sufficient, by taking them in the given plane. Thus

if the plane were XAy, we should have yzz90° and

cos.yizO ; and then, the equation of condition, to be

fulfilled in the choice of the angles, would be cos*, a

-f-cos*.(3=L.

If the line is parallel to a given right line as ab,

the latter may be taken for an axis, and the condition

of parallelism is expressed by the equation, cos*. « z=l :

in which case the angle a is either cipher or 180°.

If the line does not pass through a, the origin of



INTRODUCTION. XXXIU

the coordinates, the angles by which its direction is

determined, are those which it makes with three lines

drawn through any point of the same, parallel to the

three axes ; and by these angles together with the

coordinates of the assumed point, the position of the

line is completely determined.

It has been already stated, that forces may be com-

pared together without recurring to the motions which

they are fitted to produce. Indeed, in numberless cases,

these effects do not follow, the forces being either

wholly or in part counteracted : and in this latter case,

the motion produced, is that due to the unbalanced

force, i. e. to the force which remains, after deducting

those forces or parts of forces which are in equilibrio.

Thus when a body is supported by the hand^ and

thereby prevented from descending towards the earth's

surface, a pressure is felt, which is then the entire

weight of the body. If the hand were to descend under

its load, the pressure would be suitably diminished;

but the hand is not entirely relieved from the pressure

of the body in contact, unless it descends with the cele-

rity with which the body falls, when free to obey

the force of gravity. In these instances, the pressure

is the part of the weight counteracted, and the mo-

tion of the body downwards is the effect of the re-

mainder.

From this simple instance, it will appear requisite

to ascertain the forces which are so counteracted, before

we can properly proceed to reason about the motions

produced.
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Hence tlie science of mechanics naturally resolves

itself into two branches ; that which treats of forces

independently of motion ; and that wherein the motions

are deduced from the exciting forces, and vice versa.

The one branch, relating chiefly to cases of equili-

brium, is denominated Statics. The other, relating

to the effects of unbalanced forces, is named Dynamics.

The theory of statics naturally precedes that of

dynamics because of its greater simplicity. It is alto-

gether independent of the consideration of motion,

and therefore of time and space ; as also of the mass of

the body moved and its inertia. In this branch of

mechanics, the body acted on, is regarded, merely as

an assemblage of points to which certain forces are

applied; and its properties are considered, no farther

than as it is more or less fitted to transmit these forces

from one point to another. Further : though gravity

is a force by which every particle of matter is affected,

it will be found convenient to establish the more general

theorems without reference to this force, leaving it to

be regarded as part of the system of forces concerned

in the particular cases, to which these theorems are to

be applied.

The science of dynamics, having for its end, the

establishment of the connexion between forces and mo-

tions, under all the circumstances in which they can be

offered to our thoughts, must rest upon a foundation of

certain physical principles, denominated the laws of

motion : which as they seem not to be established by an

inherent necessity, are to be collected from observation

and experiment.
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Because of the peculiar modification of meclianical

action, which belongs to the constitution of fluids, it is

found convenient to separate the mechanics of fluid,

from those of solid substances : and adopting a like

distinction in this part of the subject, we give the name

of Hydrostatics, to that which treats of the equilibrium

of fluids ; and of Hydrodynamics to that which treats of

their motions.

Gaseous substances are distinguished from other

fluids, by the properties of compressibility and elas-

ticity ; and accordingly, these become the subject of

another branch of mechanical philosophy, denominated

Pneumatics.
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STATICS.

SECTION I.

OF FORCES APPLIED TO A MATERIAL POINT.

1. As all reasoning consists in connecting certain propo-

sitions with others previously received as true, it is requisite

that we should begin with those which lie nearest to first

principles : and such are the propositions which immediately

follow.

" As forces in equilibrio destroy, each the effect of the

rest ; the body, by means of which they are opposed to each

other, is in the same condition, as to rest or motion, as if

they had not been applied."

Hence, we are warranted, in introducing, or suppressing

any system of forces in equilibrio : and in the course of our

demonstrations, it will frequently be found convenient to re-

sort to this artifice.

" If a system of forces is in equilibrio, the equilibrium

shall not be disturbed, by fixing a point in the body to which

they are applied."

For if the forces engaged are in equilibrio, there is no

tendency to motion thence resulting, and therefore no pres-

sure on the fixed point, and consequently, no reaction ; i. e.

B
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there is no new force introduced into the sj'stem, by fixing

one or more points of the body.

" Two equal forces, applied to the same material point, in

opposite directions, are in equilibrio."

For no reason can be assigned, why either should pre-

vail: i. e. why the material point should be moved in the di-

rection of one of the equal forces, rather than in that of the

other.

Also, " Two equal and opposite forces are in equihbrio,

though they should not be immediately applied to the same

point, provided, that the line connecting the points of appli-

cation is of invariable magnitude." For then neither of the

points can be moved in the direction of the force applied to

it, without drawing the other along with it, and there is no

reason, why this common motion should be in the direction

of one of the forces, rather than in that of the force equal

and opposite.

Hence it follows, that when the system of points is in-

variable, such as those of a perfectly rigid body, we are at

liberty to change the point of application of a force, for any

other in the line of its direction.

Thus let the force /; applied at the point m, act in the di-

rection BA (Fig. 2.) this force may be transferred to any other

point as m' in the same line. For, if at this latter point, we

apply two forces, acting in the same line, but in opposite di-

rections, and each of them equal to p, this will have no effect.

There are then three equal forces engaged, viz. one acting at

m, in the direction of mx ; a second at w^' in the direction of

m'B, and a third at the same point in the direction of ?nA.

Of these, the first and second are in equilibrio, and may

therefore be suppressed ; after which, there remains but the

third, which is the original force p, whose point of applica-

tion is transferred from m to 7n, a new point in the line of its

direction.

Two forces not immediately opposite in direction, cannot

be in equilibrio.
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Let the two forces act in the directions of the different

lines AB, CD, (Fig. 3.) If these forces could be supposed to

be in equihbrio, that equihbrium would not be disturbed, by

making the system of points invariable, or by fixing one of

those points as m taken in the line ab, the direction of one of

the forces : this being done, the force which acts in the direc-

tion of this hne, will evidently be destroyed by the reaction

of the fixed point ; wherefore, the force in the direction of cd

will then remain alone, and will turn the system round the

fixed point m. There is then, no equilibrium when this point

is fixed ; and therefore, none when it is free. Hence it fol-

lows that

" If two forces are in equilibrio, they must be directly op-

posed, and therefore, they must also be equal."

When two or more forces not in equilibrio, are applied

to the same material point, they must give to that point, a

tendency to move with a certain velocity, and in a certain di-

rection. The effect then, is the same, as that of some one

force. This last is named the resultant of the forces actually

applied, and they its components. Generally, the resultant

of any forces is that force., which would produce alone the

same motion which results from the combined action of the

original forces : and the components of any force, are those

from whose combined actions the same motion would result

:

wherefore, in all statical inquiries, the components may be

replaced by their resultant, and vice versa.

Accordingly, when a system of forces is applied to a

point, and not in equihbrio, the equilibrium shall be es-

tablished, by applying a new force, equal and opposite to

their resultant.

Conversely, if a system of forces is in equilibrio, any one

of them, its direction being changed into the opposite, is the

resultant of the rest. For any one of them is in equilibrio

with the resultant of the rest, and therefore equal and oppa-

site to that resultant.

b2
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2. To find the resultant of two or more forces applied to

the same material point, is the fundamental problem of Me-
chanics. The most simple case of this problem, is that in

which the forces act in the same line.

If two forces p and p are applied to the same material

point, and in the same direction, their resultant is equal to

their sum, i. e. r =^3 -^-p •

This is manifest, without looking for the measures of the

forces in the motions they are fitted to produce.

If two forces p and jp are applied to the same material

point, but in opposite directions, their resultant is equal to

their difference, and acts in the direction of the greater

force, I. e. supposing p to be the greater force, we shall have

n:z.p—^'.

This will be evident, by resolving the greater force ^,

into two, one part equal to p', and the other to 2>
— 2^'' ^^^

then we have three foi'ces, viz. p, p — p , acting in the same

direction ; and^', acting in the opposite direction: of these,

the first and last are in equilibrio ; and these being sup-

pressed, there remains only the force ^J

—

p, which is there-

fore the value of r.

These things are equally true offerees acting in the same

line, though not immediately applied to the same point ; the

line being supposed to belong to an invariable system ; and

they are extended to any number of forces acting according

to such a line, by stating, that the general resultant of the

forces is equal to the difference between two sums, viz. the

sum of those which act in one direction, and the sum of those

which act in the opposite direction, the direction of the re-

sultant being that of the greater sum.

This proposition may be announced, in a manner still

more compendious, if having prefixed positive signs to the

symbols of the forces acting in one direction, we mark with

negative signs, those which act in the opposite direction : for

then we may state, that the resultant of all the forces acting
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in the same line, is equal to their sum ; using this term in the

same sense as in common algebra. Thus if three forces

-\-p, -\-p',-\-p" act in the same direction, and two forces

—p'", — /?"" in the opposite direction, we may assert, that the

general resultant is equal to their sum, paying attention to

their signs; t. e. K— p -{-p -\-p —p — p .

To find the resultant of two forces applied to the same

material point, when their directions are oblique to each

other, is a more difficult problem. We shall proceed to its

solution by degrees, first ascertaining the direction of the

resultant, and then its quantity.

The direction of the resultant must be in the plane of the

components. For, if it is supposed to be that of a line on

one side of this plane ; another line may be assigned, sym-

metrically situated, on the other side of the same plane

;

and whatever can be supposed to determine the resultant

to one of these directions, must equally serve to give it the

other. But the resultant cannot take two different direc-

tions ; therefore it cannot lie at either side of the plane of the

components.

The direction of the resultant of two forces applied to

the same material point, must lie within the angle contained

by their directions.

Let the forces act on the point a in the directions ai/, ax.

(Fig. 4.)

The former would draw the point out of the line ax on

the side of a?/ ; and the latter would draw it out of the line

Ay on the side of ax : wherefore the effect of both con-

jointly, is to give to the point a tendency to move in a di-

rection intermediate between the lines Ay, ax : i. e. the di-

rection of the resultant must lie within the angle yAx.

If the components are equal, it can be shown, by reason-

ing in the same way as in the first part of this article, that

the angle made by their directions is bisected by that of the

resultant.
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If without any change in the directions of the compo-

nents, one of them is increased, the other remaining un-

varied ; the effect on the direction of the resuUant is to di-

minish the angle which it makes with the component so in-

creased.

For let the forces p and p' act in the directions \x, a?/,

and let a^ be the direction of their resultant r. (Fig. 5.)

Then, if p becomes p -f-p, the new resultant r' is that of r

and pt and must therefore lie within the angle contained by

the directions of these last forces ; but the direction of 7^ is

that of p or ax, wherefore the direction of r' must be a line,

such as A^', lying within the angle s:\x.

Knowing the direction of the resultant of two equal forces,

applied to the same material point, and making with each

other any angle whatsoever, we may proceed to ascertain the

direction of the resultant, when one of the equal forces is

multiplied by any integer number.

For A, being the point at which the equal forces are ap-

plied, (Fig. 6.) and Ay, ax, their directions, if two equal por-

tions of these lines measured from the point a, as ae, ab,

are taken to represent these forces, and the parallelogram

EB is completed, its diagonal af, which bisects the angle at

a, shall be the direction of the resultant. This resultant,

therefore, may be transferred from a to f, at which point, if

it is resolved in directions parallel to Ay, ax, it shall re-

produce its components, viz. fq, fg, each equal to ae or ab.

Now, if the force applied at a in the direction ax, were

made ac zi 2ab, this would be adding the force ab or bc to

the forces fq, fg ; and if the force fq were transferred to b,

and there compounded with bc, the resultant of these two

forces would take the direction of bg parallel to af ; and

the point g, where it meets the direction of the force fg,

would be a point in the direction of the resultant of the

forces AE and ac ; a being necessarily another : wherefore

the direction is that of the connecting right hne, which is
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the diagonal of the parallelogram, whose sides are ae and

AC.

In the same manner, if at the point g, the resultant of the

forces AE and 2ab, is resolved in directions parallel to ky

AX, it shall reproduce these components, viz. gr — ae and

Gi n 2ab : and if the former of these is transferred to the

point c, and there compounded with another force equal to

AB acting in the direction kx or ex, the resultant shall be

parallel to af, and the point h, where it meets the line gi,

shall be a second point in the direction of the resultant of

the forces ae and 3ab : moreover,^ the line eh being equal

to 3ef = Sab, this direction shall be that of the diagonal of

a parallelogram whose sides are ae and 3ab. This method

of investigation will serve for wab any multiple of the force

AB.

In like manner, if the resultant of the forces ae and

ni.KB, is transferred to the further extremity of the paral-

lelogram formed by these lines, and is there resolved in di-

rections parallel to a?/, ao;, it shall reproduce these compo-

nents : and if w^.ab is transferred from this point to e, and

there compounded with another force ep z: ae, acting in the

direction e//, it shall give a resultant parallel to the diagonal

of the parallelogram whose sides are ae and m.AB: and the

point where it meets the side parallel to Ay, being a second

point in the direction of the resultant of 2ae and w?.ab, this

direction is that of the diagonal of the parallelogram formed

by these lines. Thus by treating the force w2.ab, as the

force ae was treated in the former part of this investigation,

the force ae may be multiplied by any integer number n, and

it may be shown, that the direction of the resultant of the

forces represented by w.ae and w.ab, is that of the diagonal

of the parallelogram formed by these lines.

From this it appears, that when two commensurable forces

are applied to a material point, making with each other any

angle whatsoever, the direction of their resultant is that of
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the diagonal of a parallelogram, whose sides are taken in the

directions of the forces, and in the same ratio. For if two

forces, each equal to the common measure, were to act at

the same point and in the same lines, the direction of their

resultant would be that of the diagonal of a parallelogram,

formed by equal portions of those lines ; and when the forces

are multiplied by any integer numbers, the direction of the

resultant has been found to be that of the diagonal of a pa-

rallelogram, whose sides, taken in the same directions, are

had from the former by the same multiplications.

Finally : as the unit of force may be taken of any magni-

tude, however small, the proposition may be extended to the

case where the forces are incommensurable. For let two

such forces applied to the point a, be represented in quan-

tity and direction by the lines ab ac, and completing the

parallelogram ae, (Fig. 7.) let a portion ef, be taken on the

line EB, measured from the point e ; and however small this

portion, it is evident that a submultiple of ab, may be

found less than it ; and that this submultiple, taken repeat-

edly from the line be, shall have one of its terminations at

some point as o, intermediate between f and e ; then draw-

ing OG parallel to ba, we have a parallelogram bg, whose

sides are commensurable ; and therefore, the resultant of

the forces, represented by ab, ag, shall have the direction

Ao, which makes with ac, an angle less than the angle fac.

But the resultant of the forces ab, ac, makes with ac, an

angle less than oac, and therefore a fortiori, less than

FAC. Again : taking from the point e, on the line eg, a

portion eii however small, it can be shewn in the same way,

that the resultant of the forces ab, ac, makes with ab, an

angle less than the angle hab. This resultant therefore,

falls within the angle fah, however small, which can be true

of no line, but the diagonal ae.

It is now proved, that when two forces of any magni-

tudes, are applied to the same material point in directions
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making any angle wliatsoever, the direction of their re-

sultant is that of the diagonal of a parallelogram, whose

sides are taken in the directions of the component forces,

and proportional to them in magnitude.

But further: the resultant of two such forces, is repre-

sented by the same line, in magnitude also : For let the

forces be represented in magnitude and direction, by the

lines AB, AC
;
(Fig. 8.) and let r denote the resultant whose

magnitude is to be determined. Completing the parallelo-

gram contained by the lines ab, ac, the direction of r is that

of the diagonal ae. And as the resultant, its direction

being changed into the opposite, is in equilibrio with its

components, it follows, that if ea is produced beyond the

point A, as to g, a force equal to r, acting in the direction

AG, shall be in equilibrio with ab, ac. Again : any one of

the equilibrating forces, its direction being changed into the

opposite, is the resultant of the remaining forces; accord-

ingly, producing ca in the direction am, a certain force

acting in the direction am, is the resultant of the force ab,

and of the force r acting in the direction ag. Wherefore,

am coincides with the diagonal of a certain parallelogram,

one of whose sides is ab, and the ether is in the direction of

AG. This is sufficient to determine the parallelogram ; for

if from B, a line is drawn parallel to ag, and from the point

H, where it meets the diagonal, another line, m, is drawn

parallel to ba, the parallelogram is completed. Now the

force equal to R, and acting in the direction ag, must be

represented by ai : for a force in this direction, if greater or

less than ai, would not compound with ab, a force in the

direction of ah, the diagonal of the parallelogram. But

lA rz HB zz AE, which completes the proof that " the re-

sultant of two forces, acting on a material point, in direc-

tions making any angle whatsoever, is represented in quan-

tity and direction by the diagonal of a parallelogram, whose
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sides represent the component forces, in quantity and di-

rection."'*

3. By substituting for one side of the parallelogram of

forces, the opposite side which is equal and parallel, it will

follow, that any two forces meeting at a point, and their

resultant represented by the diagonal, are proportional to

the sides of one of the triangles, into which the parallelo-

gram is divided by this diagonal; and consequently, to the

sides of any triangle, whose sides are parallel to the direc-

tions of the three forces.

When the triangle is used in place of the parallelogram,

* If it be admitted that force is measured by the velocity which it generates in

a given body, by its action during a given time, this theorem may be demonstrated

in the following manner.

If a body moving in the right line AC (Fig. 9.) receive an impulse in a direction

mo perpendicular to that line, such an impulse does not alter the velocity with which

it recedes from the line ab also perpendicular to AC. For if it did, an equal and

opposite impulse mo should double the change, since they are symmetrical with

respect to AC ; but they are in equilibrio, and therefore produce no joint effect.

Now let the body receive, at the same moment, two impulses, which acting

separately, would carry it in the same given time over the lines oc, OD, perpen-

dicular one to the other. (Fig. 10.) At the end of that time, the body shall be

found at E, the extremity of the diagonal of the rectangle formed by the lines oc,

OD. For the impulse od perpendicular to oc, does not alter the velocity with

which the body recedes from the perpendicular OD, by virtue of the impulse

oc : therefore, at the end of the given time, the body shall be found at the same

distance from od, i. e. somewhere in the perpendicular CE, whether od acts or not.

For the same reason, by virtue of the impulse od, at the end of the given time,

the body shall be found at the same distance from oc, whether the force in oc acts

or not, i. e. somewhere in the perpendicular de. Wherefore, since at the same

moment, it arrives at both lines CE, de, it must arrive at E, the only point common

to both. Moreover, as the body after leaving the point o, is not supposed to re-

ceive any other impulse, its motion from o to E must be uniform and rectilinear

:

accordingly in the given time, it must describe the right line oe, which therefore

represents the compound force both in quantity and direction.

Now when the impulses ab, ad make any other angle, (Fig. 11.) the impulse

AB is resolvable into the two at right angles, ao and A??;, .*. we have two impulses,

Ao, and AD-j- A>n=: AD-)-D« = A«, which, being perpendicular one to the other,

compound the impulse represented by AC, the diagonal of the parallelogram on,

and which is also the diagonal of the parallelogram bd.
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it is to be observed, that the angle contained by the sides

which represent the component forces, is the supplement of

that contained by the forces themselves. And this observa-

tion is to be attended to, when from the component forces

and the angle contained by them, the resultant is to be de-

termined, either graphically or by computation.

The component forces and their resultant, being thus

represented in quantity and direction, it follows, that all

questions relative to the magnitudes and directions of these

forces, are reducible to those which relate to the sides and

angles of a triangle.

Thus, the sides of a triangle, being proportional to the

sines of the opposite angles, and the sine of an angle and of

its supplement being the same, these analogies will subsist

among the forces and the sines of the angles contained by

their directions. These analogies may be thus expressed,

p _ p' _ R

sin. 6' ~ sin. ~ sin.{d -\-B~)'

wherein, the component forces, and their resultant, are de-

noted by p, p', R, and the angles contained between each of

the former and r, by 6, 6'
; and, therefore, that which they

make with each other by + 0'«

The foregoing equations express the proportionality of

the forces to the sines of the angles, each force being analo-

gous to the sine of the angle contained between the direc-

tions of the remaining two. From which it appears, that

any two of the three forces, are reciprocally proportional

to the sines of the angles which they make with the direction

of the third force ; or that the products are equal, which

are obtained by multiplying each of the two forces into the

sine of the angle which it makes with the third force.

As the perpendiculars let fall on the directions of two

forces, from any one point in the direction of the third, are

proportional to the sines of the angles they subtend, the

same things may be expressed, by stating, that any two of
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the three forces, are to each other, reciprocally as the per-

pendiculars on their directions, let fall from any one point in

the direction of the third force ; or that the products are

equal, which are obtained by multiplying each of the two

forces into the perpendiculars on their directions, let fall

from any one point in the direction of the third force.

Accordingly, the angles being given, with any one of the

three forces ; or two of the forces and the angle contained

between one of them and the third, the remaining force and

angles are found by these analogies. The second of these

cases is, however, subject to the same ambiguity, as in the

solution of a triangle : for the angle is sought by its sine
;

and the sine of an angle is also that of its supplement.

When the components are given, together with the

angle contained by them, the value of the resultant is known

from the equation

r2 _ p2 ^ p'2 _,„ 2pp'. cos. {d + 6').

The last term of this equation is affected with a positive

sign, because the angle {6 + 0'), is the angle of the paral-

lelogram at the point where the forces are applied, and this

angle is the supplement of the angle of the triangle opposed

to the side representing r.

4. The parallelogram of forces, serves equally for the

resolution, as for the composition of forces ; but the pro-

blem is indefinite, when nothing is given but the force to be

resolved ; as appears from the foregoing equations, each of

which, contains four quantities, and therefore determines

the value of one of them, only when the three others are

given. And without resorting to these equations, it is evi-

dent, that any line, by which the force is represented, may

be made the diagonal of numberless parallelograms ; and

therefore, that any given force may be resolved into num-

berless pairs of forces.

The data most commonly given in the resolution of forces,

is the force to be resolved, and the directions of the compo-
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nents. It is often required to resolve a force into two at right

angles : i. e. into one in a given line and another perpendi-

cular to same. The force in the given line shall be p.cos.0;

6 being the angle made by p with that line ; and the force

perpendicular to given line is p.sin.0, as may appear by

completing the rectangle.

5. By applying to the same point, a third force, equal

and opposite to the resultant of two forces, the system

is reduced to equilibrium. Wherefore, " if to a material

point, three forces are applied, proportional to the three

sides of the triangle to which they are parallel, they shall be

in equilibrio."

In estimating the directions of the three equilibrating

forces by those of the sides of the triangle, the sides must

be taken consecutively, i. e. each is to be considered as di-

rected from the last named point; as when they are taken

in the order «6, 6c, ca, (Fig. 12.) or in the contrary order,

ac, c6, ha. Such forces are in equilibrio ; for ah, and a

force, equal and parallel to he, applied at the point a, give

the resultant ac, to which the third force ca is equal and

opposite : also ah with a force equal to ca, taken in this line

produced beyond a, compound a resultant equal and oppo-

site to be, considered as acting at the same point.

Hence all that has been demonstrated from the proper-

ties 'of a triangle, relative to two forces applied to a point

and their resultant, is equally applicable to three forces in

equilibrio about the same point.

6. A system offorces applied to a material point, and whose

directions, measured from that point, lie all at the same side

of a plane passing through the same point, must have a re-

sultant : and this will be true, whatever be the number of

such forces in the system.

Let the forces be op, op , op", op", &c. (Fig. 13.) all

directed towards the same side of the plane ah, passing

through the point o. The forces op, op', have a resultant
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which hes in the plane of these forces, within the angle

contained by them, and therefore, at the same side of the

plane ah. The same thing is true of their resultant r and

another of the forces as op" \ of their resultant r' and another

of the forces op" \ and so of any number of forces acting in

this manner.

If three forces act on a material point, but not all in the

same plane, and are represented by three lines measured

from the common point and in the same directions, the

resultant shall be in the direction of the diagonal of the pa-

rallelepiped having these lines for its sides, and it shall also

be represented in magnitude by the same line.

For let AB, AD, AF, represent the component forces,

(Fig. 14.) and let abcdefgh, be the parallelopiped ; whose

diagonal passing through the point a is ah. The resultant

of the forces ab, ad is ac, the diagonal of the parallelogram

whose sides are ab, ad ; and the resultant of ac, af, is ah,

the diagonal of the parallelogram whose sides are ac, af.

Conversely ; a force represented in quantity and direc-

tion, by the diagonal of a parallelopiped, is resolvable into

three forces, represented in quantity and direction by the

sides of that parallelopiped,

7. The method of composition and resolution by means

of the parallelogram of forces, may be extended to any num-

ber of forces applied to the same material point, and in any

given directions, whether in the same plane or not. For as

any number of forces may be replaced by their resultant, it

follows, that the resultant of two forces being compounded

with a third, gives the resultant of the three forces, and that

this resultant, being compounded with a fourth of the given

forces, gives the resultant of these four ; and that the re-

sultant of all but one, compounded with this one, gives the

general resultant of the whole system of forces. These suc-

cessive compositions may be effected by the construction of

so many parallelograms.
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Similarly, a given force may be resolved into any number,

acting at the same point in its direction : first, by resolving it

into two; then either or each of these into two others; and

so on without limit. And it is evident, that each of these re-

solutions may be effected in any plane containing the direc-

tion of the force to be resolved.

8. The resultant of a number of forces applied to the

same material point, may be found more expeditiously by a

method founded on the triangular scheme. This is done,

simply by describing a polygonal figure, whose sides are

proportional to the forces, and parallel to their directions.

This being done, the line which closes the polygon gives the

general resultant in quantity and direction. Thus let op,

op\ op', op", op", represent the forces apphed at the

point o, (Fig. 15.) then, from ^9, drawing the line pq, equal

and parallel to op \ the line qr equal and parallel to op" \

the line rs equal and parallel to op" ; the line st equal and

parallel to op"" -, the general resultant of the forces shall be

ot. For the force op, and the force op , to which pq is

equal and parallel, shall have for their resultant the force

oq : this last and op' , to which qr is equal and parallel,

shall have for their resultant the force or : this and the force

op" , to which rs is equal and parallel, shall have for their re-

sultant the force os : and finally, this and the force op"" , to

which st is equal and parallel, shall have for their resultant

the force ot ; which, accordingly, is the resultant of all the

forces applied at the point o.

If an additional force is applied at the point o, repre-

sented by to, this being equal and opposite to the resultant

of the rest, the whole system of forces would be in equi-

librio, and the point o would not be disturbed by them

:

whence it follows, that any number of forces applied to a

material point are in equilibrio, when the polygon is closed,

by whose sides they are exhibited in quantity and direction

;

which indeed is evident, by considering, that as the general

resultant is represented by the side which closes the polygon,
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there can be no resultant when the polygon is closed by the

lines representing the forces.

9. The method of graphical delineation is well fitted to

assist the imagination ; but when the resultant is to be made

out by computation, its quantity and the angles which deter-

mine its direction should be expressed as functions of the

component forces, and of the angles which determine their

directions. These expressions are most conveniently ob-

tained, by resolving each of the component forces according

to three rectangular axes ; then adding into one sum the

forces which act in the same line, and finally compounding

these three sums.

Thus let 2iy P) p"i p", &c. be the forces to be com-

pounded; A their point of application
;
(Fig. 16.) hx, Ay, az,

the three rectangular axes; a, a, a", a", Sec. the angles

made by the directions of the several forces with the axis ax
;

(5, /3', /3", ft'", &c. the angles which they make with the axis

A^^; and 7, y', y", 7'", &c. those which they make with the

axis A^. Then any force ^j, resolved according to these

three axes, shall give the forces/). cos. o, p.cos. ft, /J.cos.y
;

the other forces are resolved in like manner. Wherefore,

the sum of the forces acting according to the line ax, is

p.COS.a 4-f/.COS.a'+/Acos.a"-|-y'.COS.a"', -f &C.

The sum of the forces acting according to Ay, is

;?.cos./3+p'.cos.j3'+/'.cos./3"+/y".cos./3"', -f- &c.

And the sum of those acting in the line a^, is

J^.COS.y +2/.C0S.y' -{- p'.COS.y" -j- p"'.COS.y'", -f &C.

The whole system of forces is thus reduced to three

forces acting at right angles, which may be denoted by the

symbols x, y, z ; and as the relations of these three forces to

their resultant, are the same as those of the lines by which

they are represented to the diagonal of the parallelopiped

having these lines for its sides, the magnitude of the general

resultant is given by the equation

R-V{^' + ^' + z'). (1)
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The direction of the resultant is to be known by the an-

gles which it makes with each of the three axes, \x, mj, kz:

these angles being denoted by a, b, r, are given by the

equations

cos. \zz — . cos. "B — — . COS. r ~ — . (»)
R R R

10. The equations of the line of direction of r, are those

of its projections on the coordinate planes. Its projection

on the plane of zx makes with the axis kx, an angle whose

nr

tangent is — . Its projection on the plane of xy, makes

X
with the axis ky, an angle whose tangent is — . and its pro-

jection on the plane zy, makes with the axis a^, an angle

whose tangent is—

.

Therefore, the equations of this line are the following :

Z X Y
%z=:— .X. X "::=.

— .y. v — —. z.

These are to be regarded, only as two independent

equations ; inasmuch as any one of the three is derived from

the other two.

If the origin of the coordinates is not taken at the point

to which the forces are applied, let the coordinates of this

latter point be denoted by x^, y^, z^ ; and the equations of

the line of direction of the resultant will be any two of the

three following

:

z — z^=Yi^ — •^\)> or x(ar — z^), - z{x - x)

x-x^-— {y — y), or y{x - x), = x(y - y) ) (3)

y-y,-^{s~ z), or z(y - yj, - y{z - z)
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11. If the forces 2^,p',p",p"» &c. act, all in the same

plane, this may be taken for one of the coordinate planes, as

for example for ihe plane xy. In this case, we have

z r: 0. cos. r zz 0.

whereby equation (1) becomes

R = V (X^ + Y^).

and the direction of the resultant is determined by either of

X Y
the two equations cos. a •=.— . cos. b = — : or by the se-

Iv R,

cond of the equations (3) : and there is the same reduction

when the portions of the forces which act in the direction az

are in equilibrio ; for then,

ipcos.y -^-p'cos.y '\-p"cos.'^" -^p"'cos.'y"' + &c. — 0:

i. e. z zz: 0.

If z — 0, Y iz 0, the direction of the resultant is parallel

to the axis ax: and agreeably to this, equation (1) will be-

come R ;z X : and equations (2) will be cos. a = 1. cos. b z: 0.

COS. r z: 0.

In this case, the forces p cos.jS, ^/cos.jS', ^/'cos-jS",

^/"cos,j3"', &c. must be either severally equal to cypher or

else they must be in equilibrio : And the same is true of the

forces 2i cos.y, ^/cos.y', ^/'cos.-y", p"co?,.y"', &c.

12. For equilibrium among the forces of the entire sys-

tem, we must have

RziO;2. e. V(x^+Y--fz2)rz0.

And as the quantities within the parenthesis are essen-

tially positive, this condition cannot be fulfilled, unless those

quantities are, separately, equal to cypher.

The same thing appears by referring to Articles 6 and 1.

In Article 6 it was shewn that three forces meeting at a

solid angle, cannot be in equilibrio ; and if one of the three

components is cypher, the same thing has been proved of the

two remaining forces in Art. 1. It appears then, by those
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articles, that for r z= 0, we must have the three forces

X, Y, z, severally equal to cypher, i. e.

X = 0, Y := 0, z = 0.

which three equations in their more expanded form are,

y;.COS.a -4-73 .cos.a +2J .cos.a -f-p .COS,a + &c. iz U.>w

;^.cos./34-/.cos./3'+/'.cos.j3"+/".cos./3'"+ &c. = 0. I
(4,)

p.cos.7+/^'.cos.'y'+^/'.cos.7"4-i3"'.cos.7"'+ &c. =iO.J

Such are the conditions of equilibrium, among a system

of forces, applied to a material point, considered as being at

liberty to move in any direction : and if these conditions are

fulfilled, it is evident that the equation r = is also fulfilled,

i. e. that the system is in equilibrio.

If the point, to which the forces are applied, is confined

to a surface, one of the coordinate axes, as for example, the

axis A^, may be taken perpendicular to the surface at the

point; and consequently, the other two axes in the tangent

plane. Then

p.cos.7 +2?.cos.7 +/? .C0S.7 -j-p .cos.7 -f- «^c.

shall express the perpendicular pressure on the surface

;

with which pressure the reaction of the surface is in equi-

librio. Denoting this reaction by ^j^, and including this

among the forces acting in the line ass, the equation

^9^+^.cos. 7-|-p'.cos.7'4-i^".cos.7"+i?"'.cos.7"'+ &c. z=:0.

will be necessarily fulfilled. Accordingly, in the case here

considered, there will be equilibrium, whenever the two first

conditions are satisfied.

If the point is confined to a certain line, two of the three

coordinate axes, as for example, the axes a^, mj, may be

taken perpendicular to this line, i. e. perpendicular to the

tangent at the point. The third axis, ax, will be then this

tangent. The forces estimated according to the axes a^, \y,

and consequently the resultant of these forces shall be per-

c2



20 STATICS.—SECT. I.

pendicular to the line to which the material point is restrict-

ed, and therefore shall be destroyed by its reaction, i. e. it

shall be in equilibrio with this reaction. Putting p^^ for the

reaction in the line Ay and /?,, as before, for that in the line

AS, the equations,

p^^.-\-p.cos.^ -i-7/.cos./3'+^/'.cos.|3"+y'.cos./3"'+ &c. z=. 0.

Pi' +^J-cos.7 4- ^/.cos.7' +i>"'Cos.7" +^/".cos.7'" + &c. =z 0.

shall be necessarily fulfilled ; and therefore in this case there

will be equilibrium whenever the remaining condition is sa-

tisfied, expressed by the first of the three equations. (4)
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SECTION II.

OF THE COMPOSITION OF PARALLEL FORCES.

1. When two forces act on an invariable system, in pa-

rallel directions, and towards the same side of the line con-

necting their points of application, the case may be regarded

as included in that of forces meeting at a point ; by sup-

posing this point to have receded to an infinite distance.

Thus, let m, m, (Fig. 17.) be the points of application of

the forces p, p', acting in the same plane, and towards the

same side of the line mm-, and first, let their directions be

niA, m\', inclined to each other in the angle h. Then, if

without making any change in the direction of the force p,

we suppose the direction of the force p' to turn round the

point m in the same plane, so as to assume, successively, the

positions w?'a', w'a", w'a'", &c. and finally, to coincide with

m ^""
, parallel to w2A, which is the direction of the force p, it

is evident, that during this revolution of the line w'a', it shall

meet the line a/«, successively, at the points h, h', h", h'", &c.

and that when the direction of the force p' coincides with

the Hne m^"" parallel to mk, the distance at which they meet

becomes infinite.

During the progress of the system of forces p, p', towards

this state, they had a resultant continually increasing in mag-

nitude: therefore, the same forces, when parallel, have a

resultant, whose magnitude and direction are those of the

limit to which the resultant of the forces had been approach-

ing, whilst the angle made by their directions was gradually

diminished. Now, the angle of a parallelogram being dimi-

nished to cypher, the diagonal passing through that angle



22 STATICS.—SECT. II.

increases towards a limit, which is the sum of the sides

:

wherefore, the sum of the component forces is the hmit

sought. Accordingly, when two parallel forces act towards

the same side of a line transverse to their directions, the re-

sultant is equal to the sum of the components.

Again: the direction of the resultant was ever inter-

mediate between the directions of the components, whilst

they met at an angle ; wherefore, the direction of the resul-

tant of two such parallel forces is intermediate between their

directions, and, therefore, also parallel to the same.

Finally : whilst the forces met at an angle, the perpen-

diculars on the directions of the components, let fall from

any point in that of the resultant, were reciprocally propor-

tional to those forces : and when the forces become parallel,

those perpendiculars lie in directum. Therefore, the per-

pendicular between the directions of the parallel forces is

divided by the resultant into segments, which are recipro-

cally proportional to those forces ; and the same thing is

consequently true of the segments, into which a line con-

necting any two points in the directions of the parallel forces,

is divided by the direction of their resultant.

2. But though these truths may be thus inferred, from

those already established relative to forces meeting at a point,

yet the great importance of the doctrine of parallel forces in

the theory of mechanics, may seem to warrant, if not to re-

quire, a demonstration more rigorously exact. This may be

obtained in the following manner :—Let the parallel forces

p, p' acting at ?n, m (Fig. 18.) and towards the same side ofthe

right line connecting those points be represented by w?a, mV.
To this system of forces let there be added two equal and op-

posite forces mg^mg acting atm,m' and in the connecting line

produced beyond those points. By this addition no change

will be made in the result of the original system of forces.

Now compounding the forces mg, m\, and also the forces

mg\ m k , the resultant of the former pair will act in some
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line within the angle gniA as mo, and that of the latter pair

in some line within the angle g't)iA' as mo, and these lines

being no longer parallel shall meet at some point h. Trans-

ferring diese partial resultants to this point, and resolving

them in directions parallel to mg, mk, and mg , m'k', it is

evident that they shall reproduce the original components

;

viz. nd, H5 equal respectively to mg, mk, and ud', us to m'g',

m'k'. Of these nd, ud', being equal and opposite, may be

suppressed; and the resultant of the remaining two is their

sum H* + h/, or mk + m'x' ; i. e.

R = p+p'. (1)

It is now proved, that " the resultant of two parallel

forces, acting towards the same side of the line connecting

their points of application, is parallel to their directions, and

equal to their sum."

To find the point c, where the line mm' is intersected by

the direction of the resultant, we have, from similar tri-

angles.

giving

mc : CH : : ns : *h,

m'c : CH

ca.ns
mc — • mc

5H sn

But cvL.ns — cii.n's, and therefore

mc : 711 c : : s'n : *h : :
p'

: P.

Shewing, that " the line which connects the points of appli-

cation, is divided by the resultant into segments, which are

reciprocally proportional to the forces."

By compounding the last proportion, we have,

mc+ m'c : m'c : : P + P' ^ p« «• ^« "mm' : m'c : : r : p.

and in the same way,

mm' : mc : : r :
p'.

which analogies are succinctly expressed by the following

equations

:
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A =A = -"-.
(2)mm cm cm

Stating, that " any two of the forces are, one to the

other, reciprocally as the distances of their lines of direction

from that of the third force."

3, The resultant r, its direction being changed into the

opposite, is in equilibrio with p, p'. Thus cc representing

the resultant of the parallel forces mA, m'A, (Fig. 19. No. 1.)

becomes the equilibrating force, when its direction is changed

into the opposite, as in No. 2 ; wherefore, '' the conditions

of equilibrium, among three parallel forces, are, 1. That

the greatest should be equal to the sum of the other two.

2. That it should act in the contrary direction. 3. That it

should divide the line connecting the points of application

of the lesser forces into segments, which are reciprocally as

those forces."

4. Having established the conditions of equilibrium

among three parallel forces, the transition is easy, to the

resultant of two forces, acting in parallel but contrary direc-

tions ; for the equilibrating force, its direction being changed

into the opposite, is their resultant. Thus m'A' which equi-

librates the forces t?iA, cc", No. 2.., becomes their resultant

when its direction is changed into the opposite, as in No. 3.

Whence it follows, that " if two parallel forces act in con-

trary directions, with respect to the line which joins their

points of application, 1. The resultant is equal to their dif-

ference. 2. Its direction is parallel to those of the compo-

nents, and corresponds to that of the greater. 3. Its point

of application lies beyond that of the greater force, at a dis-

tance which, measured from that of the lesser force, is to

the distance between those forces, as the greater to the diffe-

rence : or which, measured from the point of application of

the greater of the component forces, is to the distance be-

tween them, as the lesser of those forces to their differ-

ence."
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In fact, the three cases of parallel forces here consider-

ed, differ only with respect to their names and directions

;

but not as to their relative magnitudes or points of applica-

tion. If p and p' act towards the same side of the line which

connects their points of application, r, equal to their sum, is

their resultant ; and its direction corresponds to that of the

forces p and p'. If the direction of r is changed into the

opposite, its magnitude and point of application remaining

vmchanged, the three forces are in equihbrio ; or any one of

them is in cquilibrio with the remaining two ; and finally, if

the direction of either of the first pair, as p', is also changed

into the opposite, its magnitude and point of application re-

maining unchanged, it becomes the resultant of p and r, which

are then parallel and contrary forces. Wherefore, all ques-

tions, respecting the relative magnitudes and points of ap-

plication of three parallel forces, whether one of them is in

equilibrio with the other two, or their resultant, are to be

managed by means of the same equations or analogies.

Equation (1) gives any one of the three forces when the

other two are given : for r iz p -f- P) and therefore,

p' zz R — p, p r: R — p'.

The three equations (2) contain, each of them, four

quantities, viz. two forces, and two distances ; and any three

of those quantities being given, the fourth is immediately

obtained by these equations.

Thus, if two parallel forces are given, acting towards

the same side of the line which joins their points of applica-

tion, these points being also given ; and if it is required to

find their resultant and its point of application, it is evident

that the are data p, p', mm ; and that the quantities sought

are r and cm, or cm. But by equation (1), r = p -f-
p', and by

p'

equations (2), cm =. mm'. -,.

p -f- p

If it is required to resolve a given force into two parallel

forces acting at given distances, the quantities given are

R, cm, cm', and those sought are p, p'. But
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cm
,

TZZR. r- P — R.
nwi nun

If two parallel and contrary forces are given, as also the

points of application, and it is required to find their resul-

tant and the point to which it is applied, the data are p, R,

and cm : and the quantities sought are p', cm' or mm'. But
p' := R — p, and

P
, R

cm ~ cm. . 7nm zzcm.-R— P R— p

p
5. Considering the equation cm'zz.cm. . it appears

R — P

that if whilst r remains unchanged, p increases from nothing

to R, cm' shall constantly increase: and that when p = R, the

P
value of p', which is r— p, is then cypher, and cm' zz cm, -

is then infinite. This shows, that when two parallel forces,

acting in contrary directions, are equal, there is no single

resultant ; or, which is the same thing, that there is no sin-

gle force by which the equilibrium can be established. In

fact, could we suppose a single resultant, there would be no

reason why it should be nearer to one than to the other of

the components ; it must, therefore, either be at an infinite

distance from both, or at equal distances between them ; and

if this latter case be supposed, there is no reason why it

should corrrespond in direction with one, rather than with

the other of the components, for all here is symmetrical.

p
If p still further increases, the denominator oi cm. ,

R— p

which is the value of cm', changes its sign ; which denotes that

this latter quantity is then to be measured on the transverse

line, in the direction of cm : and because the absolute value of

the denominator is less than p, the absolute value of cm' is

greater than cm ; diminishing from infinity to this limit, as p

increases from r to infinite.

From the equation p' — r— p, it also appears, that in

this case p' is negative ; or that its direction, which on the
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supposition of r>p, corresponded to that of R ; now, on the

supposition of p>r, corresponds to that of p, all of which is

but the analytical expression of the truth already stated, viz.

that the resultant of two parallel and contrary forces is equal

to their difference; that its point of apphcation lies beyond

that of the greater of the component forces, and that it cor-

responds with this force in direction, with respect to the line

which connects the points of application.

6. The principles already established will direct us how

to proceed in the composition of any number of parallel

forces.

Thus let p, p', p", &c. be any parallel forces applied at

the points of an invariable system, whether in the same plane

or otherwise ; and let it be required to find the general re-

sultant, as also its point of application.

We first compound those which act at the same side of

a plane transverse to their directions : let p and p' be two

such forces, we have for their resultant r := p + p'
; again,

compounding r with a third of these forces p", we have the

resultant of r and p", i. e. r' = r -f-
p" i= p -f p'H- ?"• Thus,

the resultant of all the parallel forces, which act towards the

same side of the plane transverse to their directions, is the

sum of all such forces. In the same way, the resultant of all

the forces, which act towards the other side of the same

plane, is equal to the sum of these latter forces : the

general resultant of all is the difference of these two partial

resultants, and corresponds in direction with the greater:

i. e. it is equal to the sum of those which act towards the

same side of the transverse plane, minus the sum of those

which act towards the opposite side of the same plane ; and

it corresponds in direction with that of the greater sum: so

that regarding as positive those which are directed to-

wards one side of the plane ; and as negative, those di-

rected towards the opposite side of the same plane, and un-

derstanding by the sign + in the formula wherein they are

combined, that the forces are to be connected with their
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proper signs, as in common algebra, it may be stated, that

the general resultant is equal to the sum of the parallel

forces, or that r zz p + p'4- p"+ &c.

The point of application is found for the resultant by the

repeated use of the rule for finding that of the resultant of

two component forces.

First, the point c (Fig. 20.) is had by dividing the line mm
in the inverse ratio of the forces p and p'. Then conceiving

the force r (z= p + O ^o ^^ applied at this point, we connect

it with the point m", and we find c, the point of application

of r' by dividing the line cm" in the inverse ratio of the forces

R and p", i. e. of p + p' and p". Having found, in this man-

ner, the point of application of the resultant of all the forces

which act towards one side of the tranverse plane, we do the

same for the forces which act towards the other side of the

same plane, and the point of application being thus found for

the resultant of each of the groups of parallel forces, we find

that of the general resultant by the rules already delivered

for two parallel forces acting in contrary directions.

If these two partial resultants are equal in magnitude, as

well as contrary in their directions, the system offerees ad-

mits of no further reduction: i. e. it admits of no single ge-

neral resultant, and therefore cannot be equilibrated by any

single force.

From the method of finding the point c, it is evident that

its position in the line mm' is altogether independent of the

angle kmm \ therefore, whilst the directions of the forces p

and p' turn round their points of application, the intensities

of these forces and the parallelism still remaining, R the mag-

nitude of the resultant, and c its point of application, shall

continue unchanged. The same is to be observed of r', the

resultant of r and p", or of p, p', p", if these three forces,

their intensities and parallelism remaining, turn round their

respective points of application : and the same thing is true

of all the partial resultants, and, therefore, of the general
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resultant when there is one : so that if the directions of all

the forces of the system are simultaneously changed, the pa-

rallelism remaining, as also the intensity of the force applied

at each point, the general resultant will continue of the same

magnitude, and will have the same point of application.

This point is denominated the centre of parallel forces, and

may be defined to be that point of the body through which

the general resultant always passes, whatever be the di-

rections of the forces ; the parallelism, as well as the in-

tensities of the forces applied at the several points, still re-

maining.

The general resultant of any number of parallel forces

being equal to the sum of those which act in one sense, mi-

nus the sum of those which act in the contrary sense, this

sum or difference may be supposed to be applied at the cen-

tre of parallel forces ; and, therefore, if a force equal to this

is applied at the same point, and in the opposite direction,

the whole system shall be maintained in equilibrio, whatever

be the position of the body, or of the lines connecting its

several points, with respect to the directions of the parallel

forces.

7. As the centre of parallel forces frequently offers itself

to our consideration in mechanical questions, it is of impor-

tance to show how its coordinates are determined, as func-

tions of those of the points of application, and of the intensi-

ties of the forces there applied. This is done by computing

its distance from three coordinate planes.

Wherefore, beginning with one of those planes, which

may be that oi xy. Let mo, mo, be the perpendiculars on

this plane, from m, m , the points of application of the forces

P, p': (Fig. 21.) and let cr be the perpendicular, from the

point at which their resultant is applied. It is evident that

o, r, o' , the projections of these points shall lie in the right

line 00 . From m, let mg be drawn parallel to this line oo'

,
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meeting cr at e. Then, from similar triangles, there is ob-

tained the following proportion

:

ce : m'g (: : mc : mm) : :
p'

: r,

wherefore,

R X ce = p' X m'g.

But also,

R X er rr p X mo 4- P' X go.

And adding these equations,

R X cr zz p X wo + P' X m'd. (a)

In the same way, from m", the point of application of a

third force p", letting fall the perpendicular m"o", as also

from c, the point of application of r' the resultant of R and

p", letting fall the perpendicular cr, we have

r' X c'r'=R X cr + p" X m"o". (b)

Proceeding in the same way with m'", the point of appli-

cation of a fourth force p'"
; and with c", the point of appli-

cation of r'', the resultant of r' and p'", we have

R X e r z= R X c /
- + P Xni o , (c)

Then adding together the equations (a), (b), (c), we have

r" X c'V'z= p X mo + p' X w/o'-f- P" X m"o"+ p'" X m"'o"' :

and so for any greater number of forces.

In the figure, all the forces, p, p', p", See. are represented

as acting towards the plane X7/, and all the points of applica-

tion, m, m , in' , &c. are placed on the same side of that plane

;

but it is easily perceived, that if any of the forces act in the

contrary direction, or if any of the points of application are

situated on the opposite side of the plane, such forces and

the distances of such points are to be marked with negative

signs; and that the theorem is still true, viz. that "The
sum of the products, formed by multiplying each of the com-

ponent parallel forces into the distance of its point of appli-

cation from any assumed plane, is equal to the single product
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of their resultant into the distance of its point of application

from the same plane." So that if z denotes the distance of

the general resultant r, and z, z, %" , &c. the distances of the

several points m, m, m", &c. we have

Rz = p.^ + pV+ pV'+ y"'z"' + &c.

or, putting for r its value, and dividing,

P^ + pV+ p"^"+ p'V+ &c.
z =:- (3)

P 4_ p'_)_ p"4-p'''+ &c.

By this theorem the centre of parallel forces is limited to

a plane, parallel to that of xtj, at the distance z so deter-

mined. To fix it absolutely, its distance from each of the

other two coordinate planes must also be determined ; which

is done for them as for the plane of X7j. Let x be its dis-

tance from the plane zy, and y its distance from the plane

zx, the distances of the points of apphcation of the compo-

nents from these planes being in like manner denoted by

X, x', x", x'". Sec. ?/, y', 2/", 9/"', &c., we have

_ Yx +f'x'+f"x''+ t'"x"'-\-Scc, .

^— P + P'-f P''+ P'"+ &c. ^
^

_ py 4- pV-i- t'Y+ v"Y'+ &c.
Y -

p + p'+ p"+ P'"+ &c. ^' ^

These are the values of the coordinates of the centre of

parallel forces, and by them its position is completely deter-

mined. And it is manifest, if the three lines, z, x, y, so ob-

tained, are measured on the three axes, which are the inter-

sections of the assumed planes, that the centre of parallel

forces is at the remote extremity of the diagonal of the pa-

rallelopiped, having the same three lines for the sides of its

solid angle.

If the points of application of the forces p, p', p", &c. lie

in the same plane, this plane may be taken for one of the co-

ordinate planes, as for example, that of xy ; and this, whe-

ther the directions of the forces lie in the same plane or not.
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By this disposition we shall have s, z', s", &c. each equal to

cypher; and, therefore, also z — 0: so that the position of

the centre of parallel forces is then determined by the equa-

tions (4) and (o), which give the values of x and y.

If the points of application are all arranged in the same

right line, this line may be regarded as the intersection of

two of the coordinate planes ; as for example, of the planes

xy, xz. We shall then have z, z', z", &c. each equal to

cypher ; and, therefore, z — 0. Likewise, y, y', y", &c. each

equal to cypher, and therefore, also, y zzQ. Wherefore, the

centre of parallel forces is in the same line with their points

of application, viz. the axis of a.-: and its position in this line

is determined by the single equation (4), which expresses

the value of x, its distance from the plane zy, perpendicular

to the right line in which the points are arranged.

In this case, therefore, it will be sufficient for the deter-

mination of the centre of parallel forces to ascertain its dis-

tance from any point, assumed in the line itself, as the origin

:

and this is done by means of any one of the three equations,

(3), (4), (5).

For example, let it be supposed that there are five points,

a, b, c, d, e, arranged along the line os, (Fig. 22.) to which

points parallel forces are applied, denoted by the numbers,

5, 4, 8, 10, 2. These points may be referred to any point in

the line itself, or in this line produced, as the origin. Let

them be referred to the point 7n, and let the distances from

this point be expressed by the numbers — 3, — 1, +4, •\-G,

+ 7 : the distances on one side of this point being deemed

affirmative, as mc, md, me-, and those on the other side ne-

gative, as mb, ma. The same distinction is to be made

among the forces themselves, according as they tend to one

side or the other, Tif the line os. In the above scheme all the

forces are supposed to act in the same sense, and therefore

to be affected with the same sign. Then, for the distance of

the centre of parallel forces from the point m, the forces are
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to be multiplied, severally, into the distances of their points

of application from the point w?, and the sum of these pro-

ducts is to be divided by the sum of the forces. In this in-

stance we shall have

32_l_60-f 14—4— 15 87
^ = -¥j = ^="+"'

Wherefore, taking three units of the line from the point m,

and in the direction of the affirmative values, we have the

point g, which is the centre of the parallel forces.



3i STATICS.—SECT. IIT.

SECTION III.

OF EQUAL AND PARALLEL FORCES ACTING ON AN INVARIABLE SYS-

TEM, TOWARDS OPPOSITE SIDES OF A LINE TRANSVERSE TO

THEIR DIRECTIONS,

1. When two parallel forces act towards opposite sides

of a line transverse to their directions, those directions,

though not immediately opposite, may be said to be con-

trary.

In last section, it was shown that two such forces, when

equal, are incapable of being equilibrated by a single force.

It is now to be shown how they are equilibrated, and how

transformed. To avoid circumlocution, a pair of equal pa-

rallel and contrary forces shall be simply named a pair ; and

in all transformations of a pair of such forces, it is to be un-

derstood that the intensity of the forces, and the perpen-

dicular distance between the lines of direction, remain un-

changed, unless when the contrary is expressly stated.

A pair is in equilibrio with another pair, equal to the for-

mer, and applied to the same points in opposite directions.

This is evident, inasmuch as the forces applied at each

point are in equilibrio, and the forces in equilibrio being

suppressed, there remains no force to disturb the system.

The equilibrium continues when the second pair is trans-

ferred to any part of the same plane, in parallel directions.

Let one pair consist of the forces -\-f, — p, acting in the

directions a«, b6. (Fig. 23.) These are in equilibrio with

the pair — p, + p, acting at the same points in the opposite

directions Aa, Bb'. Let the line ax be perpendicular to

those directions, and taking a'b' — ab, let the latter pair be
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transferred to the points a' and b', in the directions ^a, n'lf,

parallel to the former. The lines ab' ba' shall be bisected,

each at the same point o. The forces -\-v, 4- ?> acting at a

and b', shall compound a force + 2p, acting at o ; and the

forces — p, •— p, acting at b and a', shall compound a force

— 2p, acting at the same point o ; and as these resultants

are equal and opposite, they shall be in equilibrio.

The equilibrium continues when the second pair is

transferred, in parallel directions, into any parallel plane.

Let the parallel planes be mn, m'n', (Fig. 24.) and let the

directions of the pair, thus transferred, be Aa, b'6'. These

lines being parallel to a«, b6, the perpendicular distances

AB, a'b', shall be parallel, and therefore in the same plane

;

and being also equal, the lines ab', ba' shall bisect each

other, as at o. The two forces + p, -|- p, shall compound

the force + 2p, acting at o ; and the two forces — p, — p,

shall compound the force — 2p, acting at the same point ;

and as these equal resultants are also directly opposed, they

are in equilibrio.

The equilibrium continues, though the second pair is

turned round in its own plane, in an angle of any magnitude.

Let the two pairs, first, act at the extremities of the

same line ab, perpendicular to their directions; (Fig. 25.)

and this line being bisected at o, let the second pair turn

round this point in the same plane ; and let Act, ^'U be their

new directions, meeting b6, aci at the points n and m. Draw-

ing the line mo, the two triangles, Amo, B'mo, are right

angled ; and having ao zz: b'o, and ?no common, the angles at

m, as also the angles at o are equal : and the same is proved

in the same way of the triangles A'no, Bno : wherefore, the

angles aob', a'ob, which are vertically opposed, being bi-

sected hy the lines ?no, no, these lines lie in directum. The

forces -j- p, -f p, acting at m, compound a force in the direc-

tion ?}w, and the forces — p, — p, acting at fi, compound a

d2
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force in the direction no : and these resultants, being equal

and opposite, are in equilibrio.

It is now proved, that " a pair is in equilibrio, not only

with a pair of equal forces directly opposed, but with the

same pair, when transferred, in parallel directions, to any

other part of the same plane, or to a parallel plane, or when

turned round in any of those planes, in any angle what-

soever."

If at the point which bisects the perpendicular distance

between the forces of a pair, a line is raised perpendicular

to their plane, this perpendicular may be named the axis of

the pair : and the same things are only differently stated,

when it is said, that " a pair is equilibrated, not only by a

pair of equal forces directly opposed, but by the same pair,

when transferred, in parallel directions, to any other point

of the same axis, or to any parallel axis ; or when turned

round its axis in any angle whatsoever."

Moreover : after any of these changes the pair is in

equilibrio with a pair of equal and opposite forces ; and as

all systems of forces are equivalent which are equilibrated

by the same system, it follows, that " a pair may be trans-

ferred, in parallel directions, to any part of the same plane,

or to any parallel plane, or be turned round in its plane,

in any angle whatsoever. Or, which is the same thing, it

may be transferred to any point of the same, or of a parallel

axis, or be turned round any of those axes in any angle

whatsoever."

2. The tendency of a pair is to give to the points of ap-

plication, movements in the directions of the individual

forces ; and, therefore, to the system to which those points

belong, considered as invariable, a movement about some

axis perpendicular to the plane of the forces. The energy

of the pair to produce this effect, can depend only on the

magnitudes of the forces, and the perpendicular distance

between their directions. The product of one of the equal
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forces, into the perpendicular distance between their direc-

tions, may be named the moment of the pair : and if two

pairs act in the same or in parallel planes ; or, which is the

same thing, on the same or on parallel axes, their moments

may be said to be of the same or of contrary directions, ac-

cording as they tend to turn the system in the same, or in

contrary directions.

A pair is in equilibrio with another pair when the mo-

ments of the two pairs are equal and contrary.

Let one pair consist of the forces -f- p, — p, acting in the

directions Aa, Bb
;
(Fig. 26.) and let their perpendicular dis-

tance, AB, be bisected at o. Let the other pair be — p', + p'»

which may be supposed, first, to act in the directions aV,

b'6', parallel to the former, and equidistant from the same

point o. Then as p X ao i= p'x b'o, the resultant of the two

forces -f- p, +p', shall be + (p -\- p')> acting at the point o:

and as —PXBon — p'x a'o, their resultant shall be — (p-j-p'),

acting at the same point o : and these equal resultants,

being dii*ectly opposed, shall be in equilibrio. Now the pair

(-f-p', — p') may be transferred to any point of the same, or

of a parallel axis, or be turned round any one of those axes,

in any angle, and the equilibrium shall continue.

Hence it follows, that all pairs are equivalent whose mo-

ments are equal and of the same direction.

Two pairs, whose moments are of the same direction, may

be compounded into one pair, whose moment is equal to the

sum of their moments, and of the same direction.

• For, let one pair of forces, p, act at the distance o?; and

let another pair, p', act at the distance d' : this latter pair

may be transformed into another pair of forces, p'.-tj acting

at the distance d. The pairs, now acting at the same dis-

tance, may be made coincident ; and they are then reduced

to one pair of forces, (p -f' P'-rj' whose moment is
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(If \

p + p'. —T j d, or vd + p'c/'.

In the same way it is shown, that two pairs, whose mo-

ments are of contrary directions, may be compounded into a

single pair, whose moment is equal to the difference of their

moments, and of the same direction with that of the greater.

And, in general, that " whatever be the number of pairs^

placed on the same or on parallel axes, they may be com-

pounded into a single pair, whose moment is equal to the

difference between the sum of the moments of one direction,

and the sum of the moments of the contrary direction; the

direction of the moment of the resulting pair being the same

as that of the greater sum."

Hence it follov/s, that " a pair may be resolved into any

number of such pairs, wdiose moments, severally, are of the

same direction with that of the pair to be resolved, or of the

contrary direction; provided, that the sum of the former

moments exceeds that of the latter, by a difference equal to

the moment of the pair to be resolved."

The planes of two pairs being inclined to each other in

any angle, if the moments are represented by the sides of a

parallelogram, whose angle is that which measures the in-

clination of the planes of the pairs, those pairs may be com-

pounded into a single pair, whose moment is represented by

the diagonal of the parallelogram ; and whose plane divides

the angle, made by the planes of the components, in the same

manner as the diagonal divides the angle contained by the

sides of the parallelogram.

Let the two pairs consist of forces of the same magni-

tude, p ; and let the forces of corresponding directions, as

for example, the forces -f- p act in the Hne ba, the intersec-

tion of the planes of the pairs. (Fig. 27.) Let those planes

be intersected by a third plane in the lines ac, ad ; and let

the forces — p act at the points of those lines m and n. The

two forces — p are equivalent to one force — 2p, applied to
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the point o, at which the hne mn is bisected. The two pairs

are then equivalent to one pair of forces 2p, parallel to the

forces p, and applied on the line ao, which is the half of ar,

the diagonal of the parallelogram, whose sides are am, an
;

and this is equivalent to a pair of forces p, parallel to the

former, and applied on the whole diagonal ar.

The two pairs of forces, p, applied on the lines am, an,

are then equivalent to one pair of forces p, parallel to the

same, and applied on the diagonal of the parallelogram con-

structed with those sides.

If the forces of the two pairs are not of the same magni-

tude, they may be brought to this condition, by transforming

one of the pairs into another of the same moment, whose

forces shall agree in magnitude with those of the other pair

:

and if the forces of corresponding directions do not act in

the line ba, the pairs may be turned round, each in its own

plane, until the directions of the forces become parallel to

this line ; and then they may be transferred, each in its own

plane, so as to satisfy this supposition.

Were the intersecting plane perpendicular to the line ab,

the directions of the forces would be perpendicular to the

lines AM, AN, ar ; and the forces being all of the same mag-

nitude, the moments of the pairs would be proportional to

those lines. And as the angles made by the sides and dia-

gonal of the parallelogram measure the inclinations of the

planes of the parallel forces, it follows, that the angle made

by the planes of the component pairs is divided by that of

the resultant pair, in the same manner as the angle of the

parallelogram by its diagonal.

Since the resultant pair is equivalent to its components,

it follows, conversely, that the pair of forces p, applied on

the line ar, is resolvable into two pairs of forces, parallel to

the same, and of the same magnitude, applied on the lines

AM, AN, which are the sides of the parallelogram whose dia-

gonal is AR ; and that the moment of the pair is to those of
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the pairs into which it is resolved, as the diagonal to the

sides of a parallelogram ; the diagonal making with its sides,

the angles which measure the inclinations of the plane of

the pair, to those of the pairs into which it is resolved.

If a direct demonstration is required, such is readily sup-

plied ; for the pair of forces p applied on ar, is equivalent to

the pair of forces 2p, parallel to the former, and applied on

Ao, the half of ar: and —2? acting at o, is equivalent to

— P, — P, parallel to the same and applied, one of them at

M, the other at n. The given pair is then equivalent to two

pairs of forces, equal and parallel to the same, and applied

on the sides of the parallelogram, of which ar is the dia-

gonal.

The angles formed by the planes being the same as those

made by their axes, the same relations of the resultant pair

to its components, as to the magnitude of their moments and

position of their planes, may be expressed by stating, that

"if on the axes of the component pairs, two portions are

taken, which, measured from the angle, are proportional to

their moments ; and if a parallelogram is constructed,

.

having these lines for its sides, the diagonal shall be the axis

of the resulting pair ; and shall also represent the magnitude

of its moment."

In constructing the parallelogram, it is to be observed,

that when the corresponding forces are brought to act in the

same line, the sides of the parallelogram should be mea-

sured from a point in this line, either both towards the di-

rections of the remaining forces, or both from those direc-

tions : and that the sides thus measured, if made to describe

an angle of 90°, by revolving in their plane, become the sides

of the corresponding parallelogram, to be constructed with

the axes.

By proceeding according to these methods, any number

of pairs may be compounded into a single pair ; first com-

pounding two pairs into one, then the resulting pair with
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another pair, and each resulting pair with a new pair, until

all are compounded.

As two forces, whose lines of direction meet at an angle,

must have a resultant, and, therefore, cannot be in equili-

brio ; so two pairs, whose planes meet at an angle, must have

a resulting pair, and therefore cannot be in equilibrio.

When the planes of the component pairs meet at a right

angle, the parallelogram becomes a rectangle ; and the mo-

ments of the component pairs being denoted by x and y, and

that of the resulting pair by R, we have

R= V(x2-fY^).

AlsOj denoting by a, the angle formed by the plane of the

pair whose moment is x, with the plane of the resulting pair,

we have

X , Y
cos.a n —

.

sm.a r:—

.

R R

If the axes of three pairs are parallel to three lines meet-

ing at a solid angle, and if on these lines three portions are

measured from the point, to represent the moments of the

several pairs, the diagonal of the parallelopiped constructed

with these sides, shall represent the moment of the resulting

pair, and shall be parallel to its axis. For let the axes meet

at the point a, (Fig. 1^.) and the moments of the three pairs

being represented by the lines ab, ad, af, taken on the axes,

let the parallelopiped dg be constructed ; then, the two

pairs, whose axes are ab, ad, and whose moments are repre-

sented by these lines, shall compound a pair, whose axis is

AC, and whose moment is represented by the same line.

This resultant of the two pairs, compounded with the third

pair, whose axis is af, and whose moment is represented by

that line, shall give a pair, whose axis is ah, the diagonal of

the parallelogram constructed with the sides AC, af, and

whose moment is represented by the same line. But ah is

the diagonal of the parallelopiped.
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These axes may be now transferred, each by a parallel

movement, to any distance, and the resulting pair shall not

be affected, as to the magnitude or direction of its moment.

Hence it follows, that three pairs, whose planes consti-

tute a solid angle, must have a resultant ; and, therefore,

cannot be in equilibrio.

If the three planes intersect at right angles, the paral-

lelopiped is rectangular ; and, in this case, the moment of

the resulting pair is equal to the square root of the sum of

the squares of the moments of the component pairs, i. e. put-

ting R, X, y, z, for these moments, we have

R = V (X^ + Y^ -f Z^).

If a, /3, 7, denote the angles made by the axis of the re-

sulting pair, with those of its components ; or by the diago-

nal with the sides of the rectangular parallelopiped, we have

X o Y z
cos.a — —

.

cos.p — —

.

COS.7— —

.

R ' R ' R

From the four last equations, any one of the seven quan-

tities, R, X, Y, z, a, )3, 7, is known, if three of them are given.

But among the given quantities, there must be a moment

:

for if the three angles, only, are given, we can determine,

only, the relative magnitudes of the moments.

3. A pair may be compounded with a single force pa-

rallel to its plane, into a single force, and this single resul-

tant shall be equal and parallel to the single component ; the

plane in which they are contained being parallel to the plane

of the pair; and the distance between them depending on

the moment of the pair.

For let 4- p, —p be the forces of the pair ; d their dis-

tance, and p' the single force. The pair may be transformed

into another pair of forces -f-
p', — p', of equal moment; and

the distance between their directions will then be d'=: —7-.
p

This pair may be now transferred, so that the force — p'
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shall be directly opposed to the single force ; these two being

in equilibrio may be suppressed ; and there will then remain

the force + p', which is the force of the pair so transformed

and transferred, that corresponds in direction with the sin-

gle force ; or it may be regarded as the single force itself,

transferred in a plane parallel to that of the pair, to a dis-

„ p.c?
tance a — —,-.

p

Conversely ; a single force may be resolved into another

equal and parallel at any distance, and a pair whose plane is

parallel to the plane of translation, and whose moment is the

product of that force into the distance to which it is so trans-

ferred.

Thus, if a force + p acts in the direction ba, (Fig. 28.)

the effect w ill not be changed by applying to any point of the

system, as d, two forces, each of them equal to p, and acting

in the line EC parallel to ba, but in opposite directions, i. e.

a force + Pj acting at d in the direction dc, and a force — F,

acting at the same point, in the direction de. We have then

three forces, viz. -f- p applied at d, in a direction parallel to

Ba, and a pair of forces p, whose moment is F.d. ; d being the

distance to which the given force is transferred. The pair,

thus generated, may afterwards be transferred or trans-

formed, in any of the ways already specified.

A pair and a single force, not parallel to the plane of the

pair, cannot be compounded into a single resultant.

Let the pair consist of the forces -{-f, — p, acting in the

directions a«, b6; (Fig. 29.) and let -f-p' be the single force,

acting in the direction cc, not parallel to the plane of the

pair. If there were a single resultant R ; a force — r, equal

and opposite, would be in equilibrio with the force + p', and

the pair +p, —p. This supposed equilibrating force, — r,

cannot be equal, parallel, and contrary to -|-p': for then

they would constitute a pair in a plane which, not being pa-

rallel, intersects the plane of the pair -{-f, — p; these two
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pairs would then have a resultant pair, (Art. 2.) and there-

fore, the equilibrium would not subsist. This being ob-

served, let i/be the direction of — r, and let the force + p'

be transferred to o, a point in that line : by this translation,

a pair will be generated ; and we shall then have two pairs,

and two single forces. The pairs are + p> —-Pj acting in the

lines Aa, Bb, and -|- p', — p', acting in the lines cc, og: and

as the planes of these pairs intersect, it follows that they must

give a resultant pair. The single forces are — r and + p'j

acting in the directions og, of, and these forces, which act

at the same point, not being equal and opposite forces, must

give a single resultant. V/e have then a pair and a single

force, which cannot equilibrate. As the force p', and the

pair of forces p, cannot be equilibrated by a single force, it

follows that they cannot be compounded into a single force.

Hence it follows, that two forces p, p', not in the same

plane, cannot have a single resultant.

For, let p' be translated to a point in the direction of p,

and there compounded with it into a resultant r : we have

then a force R, and a pair of forces— p', -f p', generated by

the translation of + p' ; and as p is inclined to the plane of

this pair, R must also be inclined to the same plane ; where-

fore, the force r cannot be compounded with the pair into a

single resultant.

Any number of forces, applied to the points of an in-

variable system, may be reduced to a single force and a pair.

For all the forces may be transferred to any one point of

the system, and by these translations there will be generated

so many pairs. All the forces so transferred may be com-

pounded into a single force ; and all tlie pairs into a single

pair.

If the single forces applied at the same point are in equi-

librio, there remains but the resulting pair : and if the pairs

are in equilibrio, or if they give a resulting pair, whose plane

contains the direction of the single resulting force, the whole
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system of forces may be compounded into a single resultant.

And if the translated forces are in equilibrio, and also the

pairs, generated by the translations, the whole system of

forces applied to the different points of the body is in equi-

librio.

Conversely, if the system of forces applied to the diflferent

points is in equilibrio, the equilibrium must subsist separate-

ly, in the system of translated forces, and among the pairs

generated by the translations, i. e, the former cannot have a

resulting force, nor the latter a resulting pair: for were both

to result, they could not equilibrate, and if either were to

result exclusively, the system of forces from which it results

could not be in equilibrio.

It remains to show how these conditions of equilibrium

are expressed by the magnitudes of the forces, their direc-

tions, and points of application : and this is what is proposed

in the following section.
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SECTION IV.

CONDITIONS OF EQUILIBRIUM AMONG FORCES APPLIED TO DIFFE-

RENT POINTS OF AN INVARIABLE SYSTEM, AND IN ANY DIREC-

TIONS.

1. It has been shown in last section, that the forces ap-

plied to an invariable system, whatever be their number,

their intensities, their directions, or points of application, are

always reducible to a single force, and a single pair: in-

cluding the cases in which either or each of these resultants

is equal to cypher. It was, moreover, shown that a single

force and a single pair cannot equilibrate. Whence it fol-

lows, that for equilibrium among the forces applied, it is re-

quisite that the resulting force, and the moment of the re-

sulting pair, should be separately equal to cypher ; and it is

obvious, that when these conditions are fulfilled, the forces

are in equilibrio.

To reduce these conditions to formulae easily applied to

particular cases, it would seem requisite to express these two

resultants, as functions of the magnitudes of the forces, the

coordinates of their points of application, and the angles by

which their directions are determined : and then, to equate

to cypher, each of these resultants so expressed. To make

out these formulae, and then to apply them to some important

cases, is the business of the present section.

The process by which we arrive at these formulae is as

follows. Three axes being assumed, which meet at a solid

angle ; each of the forces is resolved into three, parallel to

these axes ; each component is then transferred to its pa-

rallel axis, and all in the same axis combined into one force,
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equal to their sum. But by the translation of each compo-

nent force to its parallel axis, there is generated a pair.

Each of these pairs of forces is resolved into two, in the co-

ordinate planes to which they are parallel : and all the pairs

being thus brought into the three coordinate planes, those in

each plane are combined into one pair.

In this manner all the forces applied to the system are

reduced to three forces, directed along the axes, and three

pairs in the three coordinate planes. The three forces thus

obtained are readily compounded into one force, and the

three pairs into one pair. But this further step is unneces-

sary for the present purpose, which is not to find the expres-

sion for the resultant force or resultant pair, but the expres-

sion of the conditions to be fulfilled, in order that each re-

sultant should be equal to cypher. Now, the resultant of

the forces directed according to the three axes cannot be

equal to cypher, unless each ofthe three forces is, separately,

equal to cypher: (Sect. I. Art. 12.) and that the same thing

may be asserted of the moments of the pairs in the three co-

ordinate planes, will appear in the same way from (Sect. III.

Art. 2.) Wherefore, the two general conditions of equili-

brium are equivalent to six ; requiring that " the sum of the

forces in each of the three axes should be equal to cypher,

and that the sum of the moments of the pairs in each of

the coordinate planes should be equal to cypher."

To illustrate this reasoning, let Aiv, a?/, a;^, be the three

coordinate axes, (Fig. 30.) and let os represent one of the

forces. Then if this line is made the diagonal of a paral-

lelopiped, whose sides, om, on, or, are parallel to the three

axes, the force os, may be resolved into three, represented

in quantity and direction by these three lines. Any one of

these, as or, may be. transferred to its parallel axis az, and

by this translation there will be generated a pair of forces,

or. Let then the line ro, produced if necessary, meet the

plane yAx, at the point b ; it may be supposed to be applied
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at this point ; the pair of forces — or, + or, are then apphed

on the Hne Ab: and drawing the hnes bf, bg parallel to ax.

Ay, this pair may be resolved into two pairs of forces equal

and parallel to the former, and applied on the lines a/, a^.

The force om, in the same way, produces an equal force in

the axis ax, and two pairs in the planes zax, xAy : and the

force on produces an equal force in the axis Ay ; and two

pairs in the planes zAy, xAy. All the forces being treated in

the same way, if the sum of the forces in the axis ao;, the

sum in Ay, and the sum in a^, are denoted by x, y, z, and

the sums of the moments in the planes %Ay, zkx, yAx, by l,

M, N, we shall have for equilibrium

X = 0. Y = 0. z = 0. (1)

L z: 0. M = 0. N = 0. (2)

These expressions are now to be developed ; and if the

several forces in the axis ax, are denoted by x', x", x'", &c.

;

those in the axis Ay, by y', y", y'", &c. ; those in the axis a^,

by z', z", z'", &c. : the three first conditions are equivalent

to the three following

:

x'+x"4-x"'+&c. =0. ^

y'+ y"+ y'"+ &c. =0. I (3)

z'4.z"+z'"+&c. = 0. j

Of these forces, such as tend, by their directions, to in-

crease the ordinates of their points of application within the

same plane angle, may be deemed positive, and those which

act in the opposite directions, negative. The sign + with

which they are connected in the formvUae, denotes that they

are to be added with their proper signs.

Of the three equations which relate to the moments, it is

to be observed, first, that the coordinates of the points of

application of each of the forces, are those of three forces

into which it is immediately resolved, and that when these

last are transferred to the origin, and the pairs generated by
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these translations resolved in the three coordinate planes, the

same coordinates are the portions of the axes on which these

component pairs are applied. Thus, a^, ajT, on which the

two pairs of forces, or, are applied, are two of the co-

ordinates of the point o, and so of the rest. Secondly, it is

to be observed, that the directions of the forces of the pairs

in each of the planes, being equally inclined to the axes on

which they are applied, the product of the force of each

pair into the distance measured on the axis on which it is

applied, may be taken for the relative measure of its moment

in the same coordinate plane. Wherefore, putting x\ x", x",

&c. for the coordinates of the points of application mea-

sured on the axis ax; y , y", y", &c. for those measured on

the axis a?/, and z, z", z", &c. for those measured on the

axis Az, the moment of the pair of forces z', in the plane

zAx, is z'.x', and that of the pair of same forces in the plane

zAy is z.y ; and so of the moments of all the pairs in the co-

ordinate planes. Thirdly, the pairs in each of the coordi-

nate planes are divided into two sets, distinguished by the

axis, to which their forces are parallel. Thus, in the plane

yAx there are the pairs whose moments are y'.x', Y".x"y

y"'.x"\ &c., and the pairs whose momencs are x'.^, x".y",

x'".y"', &c. and of these it is to be observed, that ifthe forces,

and also the abscissse, are positive in any one of the co-

ordinate planes, the moments of these different sets are of

contrary directions. Accordingly, the equations l = 0. m =: 0.

N = 0. are equivalent to the three following:

(yV-zV) + (yV-zVO + (y"V"-z'V") + &c. = 0. ^

(z'^'-xV) -f (^l'x"- x'V) -f (z"V"- x"V") + &c. = 0. > (4)

(xy-YV)-f (x'y-y".o+(x'V'- y"V") + &c. = o. J

The negative sisns in these formulae denote, that the

moments to which they are prefixed are to be subtracted

with their proper signs.

E
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The formulae, as already presented, contain neither the

forces immediately applied, nor the angles by which their di-

rections are ascertained. But let the axes be rectangular,

and let p', p", v"', &c. be the forces, making with lines pa-

rallel to the axis kx, the angles a, a", a'", &c, with lines pa-

rallel to the axis Ay, the angles j3', /3", /3"', &c., and with

lines parallel to the axis ass, the angles 7', -y", '^'", Sec, we
shall have

x'z: p'.cos.c/. y'— p'.cos./3'. 7/— p'.cos.y'.

and so of the other component forces. Wherefore, making

these substitutions in equations (3) and (4) they are presented

as follows :

p'.COS.a' -\- p".COS.a"-l- p'". COS. a'"4- &c. — 0.

p'.cos.j3'4-p".cos./3"4-p"'.cos./3'"+ &c. =0. } (5)

p'.cos.y'+ p".cos.7"+ p'".cos.7"'4- &c. = 0.

p (cos.p .:^ — cos.7 .?/ ) + P (cos.p .^ — cos.7 .?/ ) +
p (cos.p .z — C0S.7 .;/ ) -|- &c. zz. U.

P(cos.7 .a: — cos.a.^j + P (cos.7 .x — cos.a .^ )

+

p (C0S.7 .X —COS.a .z )4-&c. 1=0. / V /

p(cos,a .y —cos.p .o^^j+P (cos. a .// — cos.p .x
) +

p (cos.a .y —cos.p .x j-f-etc. = U.

Such are the six conditions of equilibrium expressed by

the magnitudes of the forces, the coordinates of their points

of application, and the angles which determine their di-

rections.

2. To find the geometrical magnitudes denoted by l, m, n,

let the plane yAx pass through the point o, (Fig. 31.) and

retaining the representations of the force p' and its compo-

nents made in (Fig. 30.) let the lines mo, on, be produced to

meet the axes Ay, ax, at the points c and d. We shall then

have

p'.COS.a',?/'— "s!.y'iz. om X ac
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and

T'.cos.[5'.x'—Y'.a:'zz on X Ad.

Whence,

p'.(cos.a'.?/'— cos.jS'.o;') = ot7i X AC— on X Ad.

These products may be combined into one, by the follow-

ing theorem

:

" If from a point in the plane of a parallelogram, per-

pendiculars are let fall on the diagonal and contiguous sides,

the product of the diagonal into its perpendicular distance

from that point, is equal to the sum or difference of the pro-

ducts, had by multiplying each of the sides into its perpen-

dicular distance from the same point ; according as the

point is placed without or within the angle contained by the

sides."

To prove this proposition, let 07}ibn (Fig. 32.) be the pa-

rallelogram, and A the point from which are let fall on the

diagonal and sides the perpendiculars a^, ac, Ad. Also,

from the points m, b, n, let mr, hp, nq, be perpendicular to

the line ao. There will then be

oh X Ag-=. 2tv\axig.Aob — ao X bp.

am X AC — 2 triang.Ao;« n: ao X mr.

on XAd— 2triang. Aow — ao X nq.

But bp — mr ± nq. Wherefore ao X bp — ao [mr ± nq)
;

i. e. ob X Ag •=! om X ac ± on X Ad,

the positive sign being taken when the point a is placed

without the angle of the parallelogram; and the negative

sign when that point is placed within.

This theorem may be expressed as follows: "A line

being drawn from the angle of a parallelogram and in its

plane, the product of the diagonal into the sine of the angle

which it makes with that line, is equal to the sum of the pro-

ducts of the sides into the sines of the angles which they
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make with the same Hne, when that hne falls without ; and

to the difference of those products, when that line falls with-

in the angle of the parallelogram."

In the formulas, the moments of the pairs generated by

any force are expressed as if the coordinates were both posi-

tive, or both negative, i. e. as if the origin a were taken

within the angle ?iO)n, or the angle vertically opposite : ac-

cordingly, referring to (Fig. 3 1
.)

p'.(cos.a'.,;/'— cos.jS'.o;') zz: omXAc—onXAcl ^. obXAg.

The line ob is the projection of the line os on the plane

i/Ax ; wherefore, the moment of the pairs generated by the

force p', in the plane j/a.x, or round the axis a^', is the pro-

duct of this force projected on the plane y^x, into the per-

pendicular from the origin on this projection.

This may be otherwise expressed, for if the lines ao, as,

are drawn from the origin to the extremities of os, by Avhich

the force is represented, (Fig. 3].) and if the triangle aos is

projected on the plane t/acc, it may be stated that the mo-

ment of the force p' in the plane yAx, or round the axis

A^, is repi'esented by twice the area of the projected tri-

angle.

The projection of a force on a plane, is the product of

that force into the cosine of its inclination to that plane, i. e,

into the sine of the angle which it makes with a line perpen-

dicular to that plane. Wherefore, the projection of p' on

the plane zAy, is p'.sin.a': its projection on the plane zax, is

p'.sin./3': and that on the plane yAx, is p'.sin.y'. Denoting

the projections of p", p'", &c. in the same v.^ay, and putting

'p ,
p"

,

p"
, &c. for the perpendiculars from the origin, on the

forces projected on the plane zaij. Also, q , q", q'", &c. for

the perpendiculars on the same forces projected on the plane

ZA* ; and r, r", r", &c. for the perpendiculars on the same

forces projected on the plane yhx; the equations (6) may re-

ceive the following more simple forms

:
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f'.sm.a'.p -\-.F".sm.a".p" + v"'.sm.a"\p"+ &c. = 0. ^

p'.sin./3'.g'+ P".sin.i3".9"+ p'".sm.^'".?'"+ &c. = 0. V (7)

p'.sin.y'. / 4- p".sin.7". r" + p'".sin.7'". r" + &c. =0. )

In (Fig. 31.) A^ perpendicular to ob, is perpendicular to

the plane of projection sob ; it is then the shortest distance

between a;^ and that plane, and therefore the shortest dis-

tance between the lines a^ and os; which enables us to ex-

press the three last conditions, by stating that " the sum of

the products of the shortest distances of the several forces

from each axis, into the projections of the same forces on the

plane of the two remaining axes, is cypher."

3. The equations of equilibrium are now readily found,

on any particular supposition, by considering how the six

general formulge would be thereby affected.

Thus ; if the conditions of equilibrium were required for

a system of forces meeting at a point, this point may be taken

for the origin, and then the coordinates of the points of ap-

plication being all cypher, the three equations (4), or the

three equivalent equations, (6), would be necessarily fulfilled,

and the perpendiculars from the origin on the directions of

the forces being cypher, the same is true of equations (7).

There remain therefore only the three first conditions, ex-

pressed by the three equations (1), or the equations (3) or (5),

which are equivalent.

If the forces are parallel, by taking one of the axes, as az,

parallel to the forces, we have

X = 0. Y = 0.

and therefore the two first and the last of the six general

conditions are necessarily fulfilled. Accordingly, the only

conditions of equilibrium required in this case are those ex-

pressed by the last of the equations (1), (3), or (5), and the

two first of the equations (2), (4), (6), or (7), and in this case,

those equations become more simple ; the equations (4) be-

comiuff
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z'.y \-z".y" -\-7!".y"'-^ 8cc. zi 0.

z,x -^-z .X -\-z ,x -j- iKC. r: 0.

and the corresponding equations (6) and (7) then assuming

similar forms.

These conditions of equihbrium for parallel forces are

expressed by saying, that " the sum of the forces should be

equal to cypher, and that the sum of the moments round

each of the axes in the perpendicular plane should be equal

to cypher."

If the directions of the forces are in the same plane, this

may be taken for one of the coordinate planes, as for exam-

ple, for the plane t/ax. Then z r= 0. cos. 7', &:c. zz 0, which

reduces the equations (I), (3), (5) to the two first. And «',

&;c. being cypher, cos. 7', &c. being cypher, and the perpen-

diculars p', &c. q\ &c. being also cypher, the three equa-

tions (2), (4), (6), (7), are reduced to the last. Moreover,

Y, Y'i y"'> &c. being right angles, the last of the equations,

(7), assumes the form,

p .r + P .r +P -^ + ofc. ~ (J.

Wherefore, the three conditions of equilibrium, for forces

whose directions are in the same plane, are expressed by

saying, that " the sums of the forces resolved in directions

parallel to two axes in that plane, should be separately equal

to cypher, and that the sum of the moments round the third

axis should also be equal to cypher."

If the directions of the forces are parallel and in the same

plane, that plane may be taken for one of the coordinate

planes, as for example, for the plane of the axes of a; and y;

also, one of these axes, as the axis of x, may be taken pa-

rallel to the directions of the forces ; and then it will appear,

in the same way, that the conditions are reduced to the first

and last, which require " that the sum of the forces parallel

to AX, should be cypher, and the sum of the moments round

the axis a^ equal to cypher."
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4. When the six conditions of equilibrium are not satis-

fied there must be a single resultant, or a resulting pair, or

both.

To have a resulting pair without a resulting force, it is

requisite, first, that the partial moments l, m, n, should not

all be equal to cypher: for if each of these moments is

cypher, there is no resulting pair. Secondly, the partial re-

sultant forces must be, each, equal to cypher, i. e. we must

have

X = 0. Y = 0. z = 0.

otherwise these forces would have a resultant, and it has

been shown, that a force and a pair cannot be compounded

into a pair.

To have a resulting force without a resulting pair, it

might, at first view, appear requisite, that besides having

some one of the quantities x, y, z, diflferent from cypher, we

should have

L = 0. M = 0. N = 0.

But it is to be considered, that though the forces of the sys-

tem are reducible to a single resulting force, yet if that re-

sultant does not pass through the origin, it generates a pair

when transferred to that point : and that it is in this complex

form it would be at first presented by the process for com-

position, above described : whence it appears, that the last

equations express the conditions requisite for a single resul-

tant passing through the origin ; and that, generally, the case

of a single resultant does not require this condition.

To find the conditions for a single resultant, it is therefore

to be supposed, that the moments l, m, n, may be different

from cypher; and it is to be inquired, whether by any

change of the origin, they may be all reduced to cypher.

By assuming any other point whose three coordinates are

X, 7/, %, and taking this point for the origin, the new coordi-

nates would be diminished by those quantities : whereby the
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sum of the moments of the pairs of forces y', y", y'", &c. in

the plane zy, would become

y'.«'+ x".z"^- y"'J"-\- &c. - (y'4- y"+ y"'+ &c.) z,

that is,

y'.^'H- y".^"+ y'".;^'"+ &c.-y.<^.

Those of the forces z', z'', z% &c. in the same plane would

become

z'./+ z"./+ z"'.y"+ &c. -z.y.

Making the corresponding changes in the moments in each

of the other planes, the three last of the six general condi-

tions of equilibrium will become

L— y;^ + zy = 0. "^

M-za' + x^:r:0. \ (8)

N— x?/+ Ya;:=0. j

From these three equations, any two of the three indeter-

minate quantities being exterminated, there results the

equation

XL + YM + ZN zr 0. (9)

This equation expresses the relation, which should subsist,

among the three partial resultant forces and the three par-

tial resultant moments, in order that the forces of the system

should have a single resultant.

This condition may be otherwise investigated, from the

principle, that the resultant of the forces transferred to the

origin, can be compounded Avith the resultant moment when-

ever it is parallel to the plane of that moment ; and that in no

other case is it possible that they should be compounded into

a single resultant. Therefore, the condition inquired after

is the same as that to be fulfilled, in order that the direction

of the resulting force should be parallel to the plane of the

resulting moment, or, which is the same thing, perpendicular

to the axis of that moment.
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Let R denote the resultant of the forces transferred to

the origin; a, (5, j, the angles which it makes with the axes

AX, Mj, Kz, we shall have

cos.a — —

.

cos.p ~ —

.

COS.7 r: —

.

R ' R ' R

Putting G for the resulting moment, and A, ju, v, for the an-

gles made by its axis with the coordinate axes hx, Ay, hz, we

have

. L M N
cos.A rr — . cos.w n —

.

cos.v :r—

.

G
'^

G G

Now in order that R should be perpendicular to the axis

of the moment g, the cosine of the angle contained by those

lines must be cypher, i. e.

cos. a cos.X + C0S.j3. COS.M + COS.7. cos.v -zi 0.

which, putting for the cosines their values as above, gives

the equation

XL -f- YM + ZN = 0.

When this condition is not fulfilled, there is a resulting

force and a resulting moment : and this completes the ac-

count of the conditions required ; first, for equilibrium, when

there is neither resulting force nor resulting moment; se-

condly, for a resulting moment ; thirdly, for a single result-

ing force ; and fourthly, for both a resulting force and a re-

sulting moment.

The values of the resulting moment, and of the angles

made by its axis with the three coordinate axes, have been

already given: likewise, the value of the resultant force, and

of the angles made by its direction with the same axes, when

the direction passes through the origin; and these values

are not changed when it is compounded with a pair to whose

plane it is parallel. But by this composition, the line of di-

rection is changed for another to which it is parallel, in a

plane parallel to the plane of the pair ; and the distance to
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which it is tranferred is— . Making the directions of the
R "=

forces of g parallel to that of R, the side on which r is thus

transferred, is that of the force of g, which corresponds with

it in direction, as compared to the force of the contrary di-

rection. (Sect. III. Art. 3.)

If, however, a formula is required for the point of appli-

cation of the single resultant, this is readily supplied, for as

the point of application of a force may be any point, taken

indifferently in its line of direction, x, y, z, are the coordi-

nates of any point in the direction of this resultant ; and,

therefore, equations (8), which express the relations among

these coordinates, are the equations of this line. These,

constituting but two independent equations, do not give the

absolute, but the relative values of the coordinates. This,

however, is sufficient to furnish the values of two of the co-

ordinates, for any supposition made with respect to the mag-

nitude of the third. Thus, if it were proposed to find the

intersection of the resultant with the plane of ^o--: by making

2/ zz 0, in the first and third of these equations, we have this

point determined by the equations,

~
Y

'

Y
*

And in the same way, by making ^ — 0, in the first and se-

cond of those equations, we have

,
M z

z
^ z

for the intersection with the plane of t/x.

It was observed of equation (9), that it expresses the

condition to be satisfied, in order that the forces of the sys-

tem should have a single resultant ; but it does not follow

that there will be a single resultant whenever this condition

is satisfied : for it must be remembered, that the condition

was investigated on the supposition of the existence of r, the
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resultant of the forces transferred to the origin, i. e. on the

suppositon that x, y, z, were not, each of them, equal to

cypher. If each of these is cypher, there will be only a re-

sulting pair, and equation (9) is equally satisfied.

To apply this to the cases of parallel forces, and of forces

in the same plane ; if the forces are parallel, and their sum

different from cypher, they have a single resultant, and by

taking one of the axes, as for example, the axis A.r, parallel

to their directions, we have

Y = 0. z = 0. L = 0.

which reduces the equations (8) to

M-\-xz zzO.

-ti ~x^ zzO.

giving

_ N _ M
•^ ~ x' ~ x'

both constant quantities.

If the forces act in the same plane, that plane may be

taken for the plane of yx ; and then

z = 0. L = 0. M = 0.

which reduces the equations (8) to

YSS = 0.

xss = 0.

N - Xl/ -{-YX — 0.

the last giving

N 4-YX.y— .

X

If the forces are parallel and in the same plane, they may

be supposed to be parallel to ax, and in the plane of x?/ ; and

then

Y = 0. zzzO. L- 0. M = 0.

which reduces the equations (8) to



x^ z=
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SECTION V.

OF THE CONDITIONS OF EQUILIBRIUM, WHEN THE BOUV IS IN PART

RESTRAINED BY FIXED OBSTACLES; AND OF THE PRESSURES ON

THE POINTS OF CONTACT.

1. When a body is found not to be at liberty to move, or

when its motion is not in the direction of the force im-

pressed, it is plain that some new force is introduced, which

in the one case, is in equilibrio with the force actually applied,

and which in the other case, compounded with that force;

gives a resultant in the direction of the motion produced. In

the former case, the force introduced is, plainly, equal and

opposite to that applied ; and in every case, it were easy to

find, experimentally, the magnitude and direction of the new

force: for if a third force is applied sufficient to maintain

the body in a state of rest, it is evident that the three forces

are in equilibrio ; and of these, two are given in magnitude

and direction ; whereby the force sought is fully ascertained.

But this experimental investigation is wholly unnecessary for

the present purpose.

If a force is applied to a fixed point, it is destroyed; or,

more properly speaking, there is another force brought into

action, with which it is in equilibrio.

When a force is applied to a material point, whose move-

ments are confined to a certain line ; if the direction of the

force is perpendicular to that line, there is no reason why it

should move the point along that line, in one direction, ra-

ther than in the opposite direction ; whence we may con-

clude that no motion will ensue. But if the force is oblique,

it may be resolved into two ; of which, one is perpendicular
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and the other parallel to the line : the former shall be

wholly counteracted, but the latter shall produce its full

effect.

When a force is applied to a material point in contact

with a plane surface ; if the force is directed in the perpen-

dicular and towards the surface, it cannot move the point

from the plane towards which it is directed ; neither can it

move the point through the plane considered as impassable;

and acting perpendicularly, there is no reason why it should

move the point, on the surface of the plane, in any one di-

rection rather than another. Hence it may be inferred, that

the perpendicular force cannot produce any motion in the

point; and, therefore, that it is effectually counteracted.

But, if the direction of the force is oblique to the plane,

it may be resolved into two components, one of them perpen-

dicular to the plane, and the other in that plane : of these,

the former is wholly counteracted, but the latter, which is

not obstructed, shall produce its full effect in driving the

point along the plane. The same things hold when the

surface is a curve of any kind, inasmuch as the surface at

the point of application may be taken for that of its tangent

plane.

Hence we derive the following conclusions relative to the

force thus brought into action.

The force thus excited, being never exerted but in op-

position to some force actually applied, and never exceed-

ing the measure of this force, is merely a counteracting

force ; for which reason it is denominated a force of re-

sistance.

With respect to the direction of this force of resistance,

it appears that a fixed point is capable of a resistance in any

line directed from that point. That the resistance of a line

is directed perpendicularly from that line ; and, therefore,

that the resistance, at any point of the line, is confined to a

plane perpendicular to the line at that point: and that the
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resistance of a surface is directed from the surface in the

perpendicular at the point of contact.

In the two last cases, it is supposed, that the force is not

immediately applied to a point in the line or plane, for then

it would be applied to a fixed point, and would belong to the

first case ; but that it is applied to a material point, whose

movements are restricted by the line or plane.

The magnitude of the power of resistance in such ob-

stacles, i. e. the magnitude of the force of resistance which

they are capable of exerting, is unlimited ; this force being

always equal to that by which it is excited, «'. e. to the force

applied, resolved in a direction opposite to that of the re-

sistance.

The force which is equilibrated by the resistance is de-

nominated a pressure.

To seek the conditions of equilibrium, in the case of

a body restrained by fixed obstacles, is to seek the con-

ditions to be satisfied, in order that the forces actually ap-

plied, may be equilibrated by the resistances : and here it

is evident, that as the resisting forces may be of any mag-

nitudes, the inquiry is limited to the conditions to be sa-

tisfied, in order that the forces immediately applied, or

their resultants, should be opposed in direction to the re-

sistances. In other words, the inquiry is, what forces of the

system are equilibrated by the resistances? and then, the

conditions are those to be satisfied, in order to insure the

equilibrium of the remainder. And as it is of the nature of

all resistances to produce either a total or partial equili-

brium, it may be expected that the general conditions of

equilibrium, when not altogether satisfied by the resistances,

shall leave those to be otherwise provided for, fewer, and

in form more simple than for a body altogether free.

2. If the system to which the forces are applied contains

a fixed point, it is requisite and it is sufficient for equili-
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brium, that the forces should be reducible to a single result-

ing force passing through the fixed point.

But when the forces are referred to three axes meeting in

a solid angle, the condition required, in order that they

should have none but a single resultant passing through the

origin, is that expressed by the equation g rz 0. which im-

ports, that the forces should have no resulting moment rela-

tive to the origin. Accordingly, " where there is a fixed

point, it is requisite and it is sufficient for equilibrium, that

the forces should have no resulting moment relative to that

point."

The condition g = 0, was shown to be equivalent to these

three,

L = 0. M = 0. N =: 0.

Accordingly, when there is a fixed point, it is requisite for

equilibrium, that *' the forces applied should have no result-

ing moment round any one of three axes meeting at the

fixed point in a solid angle ; and these conditions being sa-

tisfied, the equilibrium is established."

When the forces of the system are parallel, one of the

axes, as for example, the axis of x, may be taken parallel

to the directions of the forces ; and then, of necessity, the

value of L is cypher, which reduces the equations of con-

dition to

M == 0. N iz 0.

importing, that the equilibrium is established, when there is

no resulting moment about either of the two axes, whose

plane is perpendicular to the directions of the forces.

When all the forces are directed in a plane, containing

the fixed point, that plane may be taken for the plane Xf/;

there is in that case no moment relative to the axis of x, or

the axis of y ; i. e. of necessity, we have l ~ 0. m ~ 0.

wherefore,

N zz 0.
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is the only condition to be provided for: i. e. when the

forces act in a plane containing a fixed point, there will be

equilibrium, when there is no moment about an axis perpen-

dicular to that plane.

The resistance made by the fixed point, being in equili-

brio with the forces of the system transferred to that pomt,

in parallel directions, it follows that the pressure is the re-

sultant of those forces so transferred.

4. If the forces are applied to a body which contains two

fixed points, the line by which those points are connected,

and therefore, every point in that line is fixed. Each point

of this line is capable of resisting in every direction : but it is

evident, that among these forces of resistance there can be

no pairs of parallel forces, except those whose planes con-

tain the fixed line.

To investigate the conditions of equilibrium with such

resistances, let one of the fixed points be made the origin,

and the connecting line the axis of ^; and let the three axes

be rectangular. Then, the forces being reduced in the usual

way, to three forces acting in the axes themselves, denoted

by X, Y, z, and three pairs in the three coordinate planes,

whose moments are denoted by l, m, n ; the forces x, y, z,

being applied to a fixed point, are effectually counteracted.

The planes of the moments m, n, contain the fixed line,

and therefore the forces of these moments may be applied to

that line; whereby those forces are also effectually resisted.

It is otherwise evident, that these moments must be equili-

brated by moments of resisting forces, inasmuch as by con-

taining the fixed line in their planes, the motion of rotation,

which each is fitted to produce in its own plane, is effectually

resisted. There remains then only the moment l, and this

cannot be equilibrated but by a moment whose plane is per-

pendicular to the axis of x; i. e. to the fixed line. But

there can be no pair of resisting forces, except in a plane

which contains this line; wherefore, this n^.oment cannot be

F
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equilibrated by the resistances. Accordingly, the condition

expressed by the equation l rr 0. remains to be satisfied in-

dependently of the forces of resistance ; all the other condi-

tions being necessarily satisfied by those forces. Where-

fore, *' for equilibrium in the case of two fixed points, it is

requisite and sufficient, that there should be no moment of

rotation round the line by which those points are con-

nected."

If the body is at liberty to slide along the axis, this axis

will oppose no resistances, except to the forces to whose di-

rections it is perpendicular ; but such are all the forces,

equilibrated by the resistances in the former case, except

the force x. Therefore, to the condition l zz 0, required in

the former case, there is now added the condition x =: 0, i. e.

*' for equihbrium when the body is at hberty to slide along

a fixed axis, it is requisite that there should be no resulting

force in the direction of that axis, and no moment of rotation

about it."

5. Hitherto the line, containing two fixed points, was

considered generally as a fixed line ; and this was fully suf-

ficient when the conditions of equilibrium were sought.

But if the line becomes fixed by the securities afforded to

two points of that line, it is evident that its powers of resist-

ance are supplied from those securities, and that by them,

the pressures on the various points of the line must be sus-

tained ; and it is desirable to ascertain the pressure sustained

by each ; or as the problem is usually stated, to determine

the pressures on each of two fixed points.

If the forces applied consist of a pair, whose plane con-

tains the two fixed points, the pair may be turned round in

its own plane, so that its forces shall be perpendicular to the

line which connects those points. It may then be trans-

formed into another, of equal moment, having the distance

between the fixed points for that between the directions of

its forces, and these forces may be then applied at those
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points. From which it appears, that the pressure on each

of the points is the moment itself, divided by the distance

between the fixed points, /. e. putting g for the moment, a

for the distance betw^een the fixed points, andjp for the pres-

sure on either, we have

G

The pressures at the two points are both in the plane of the

moment, and both perpendicular to the line which connects

the fixed points ; but in contrary directions with respect to

that line.

If the line connecting the fixed points is parallel to the

plane of the pair, the measure of the pressures is the same,

inasmuch as the pair may be transferred to the parallel plane

in which that line is contained.

But if the line connecting the fixed points is inclined to

the pair in the angle a, the pair being resolved in two planes,

of which, one contains the line, and the other is perpen-

dicular to the same line; the moments of these two compo-

nents are

G. cos.o. G. sin.ct.

of these, the latter not being equilibrated, either in the whole

or in part, by the resistances, makes no charge on the fixed

points, and the pressure made on each of them by the for-

mer, is

G. COS.

a

To find the pressures resulting from any system of forces

on two fixed points, is to find the pressures made by the

forces X, y, z, and by the moments l, m, n.

Treating the forces as before, it is evident that the pres-

sure sustained at the origin, in the direction of each axis, is

due to the partial resultant directed along that axis, and to

r 2
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the moments m and n ; it being already shown that the mo-

ment L could not charge any point of the line to which its

plane is perpendicular. The pressures made by these mo-

ments, at the origin, are,

M

in the direction of the axis of ar,

and A ,

a

in the direction of the axis of y ; and at the other fixed point

the same, but in the contrary directions. Wherefore, the

pressures at the origin are expressed as follows

:

In the direction of the axis of z,

M , x^— zar z(a — x)-\-xz
z = z -I

— —

^

—^ .

a a a

and in the direction of the axis of y,

, N YX—Ky Y ia •\- x) — -Kit

Y^ — Y-\ -=. — -.
a a a

The pressures at the other fixed point are these

:

Parallel to the axis of z,

M _ ZX— XZ

a
"~

a '

parallel to the axis of y,

N __ xy—Yx
a ~~ a '

We should arrive at the same conclusion by considering

that the force z is transferred from the origin, by the mo-

M
ment m, to a distance— . And the force y, by the moment

N
N, to the distance . For the pressures made by the

forces z and y, transferred to these distances, would be
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Ya 4-N

at the origin.

And H . .

a a

at the other fixed point.

Putting p and q for the pressures at the origin, in the di-

rections of the axes of « and y ; and ^/ and q' for those at

the other fixed point, in the parallel directions ; and putting

p, p' for the resultants of these pressures at each point, we
have

FzzVip'-^q')

for the pressure at the origin

;

for that at the other fixed point.

Moreover, putting y, for the angle made by p, with the

axis of % ; and j, for that made by p', with a line parallel to

the same axis, we have

P ' P
y/{p+q) y/{p ^q)

Thus, these pressures are completely determined in magni-

tude and direction.

But this does not relate to the pressure made by the

force x; neither is it possible to ascertain the manner in

which this force is divided between the fixed points ; for as

every force may be applied indifferently at any point in its

line of direction, it is evident that the force x may be applied

at either of the fixed points, or divided between them in any

ratio whatsoever. All that we can know concerning the

pressures produced by it is, that the sum of those pressures

is equal to the force by which they are made, and the same

thing is true of the pressures parallel to either of the other
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axes, i. e. their sum is equal to the partial resultant of all the

forces in the parallel axis, as will immediately appear by re-

ferring to the values of those pressures given above.

6. When there are three fixed points in the system, and
not in the same right line, the whole system becomes im-

moveable, and therefore, every point in it is to be regarded

as a fixed point. It is evident, therefore, that the equili-

brium is, in this case, necessarily estabhshed by the resis-

tances
; the forces, whatever their directions, being applied

at fixed points.

But as the system may be rendered immoveable, by se-

curing the positions of three points not in the same right

line, it is evident that the pressures, produced by the forces

of the system, must be ultimately sustained by those secu-

rities, and therefore it may be expected that it should be

shown, how those pressures are distributed upon three such

points, and how their values and directions may be ascer-

tained.

7. To find the pressures made by any system of forces

on three fixed points not in the same right line : let one of

the fixed points, a, be taken, as before, for the origin

;

(Fig. 33.) and the lines ab, ac for the axes of x and t/ ; also,

the axis of^ perpendicular to the plane xi/. Then, reducing

the whole system of forces to three single forces, x, y, z,

acting in the three axes, and three moments, l, m, n, in the

three coordinate planes, the forces x, y, z, and the moments

M, N, may be distributed between the points a and b, as be-

fore, when these were the only fixed points ; observing, that

the moment n, when designated by the forces and the ordi-

nates of their points of application, should be multiplied into

the sine of the angle bac : thus,

N :3 {S.I/— YX) sin. ang. bac.

Putting e for the line ac, the moment l produces at a the

pressure -|
, in the direction of the axis of ^ ; and the equal
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and contrary pressure at the point c. In this way, we may

arrive at expressions for the pressures at the several points

;

but this, in general, would be useless, as it is evident that the

distribution of the pressures is arbitrary : thus, the force x

may be indifferently applied at a or b, or divided between

them in any ratio ; and the same is manifest respecting the

force Y, and the points a and c. Also, the moment n may

be indifferently applied on any one of the lines ah, ac, or he.

It is only when the forces x, y, and the moment n are

cypher, i. e. it is only when there is no resulting force, ex-

cept in the perpendicular to the plane of the triangle, and no

resulting moment, whose plane is not perpendicular to the

same plane, that the question, relative to their bearings on

the three angular points, admits of a determinate answer.

For a force is equilibrated by the resistance of a single point

in its direction, and therefore, the addition of a second fixed

point in that direction, renders the problem indeterminate.

Also, a moment is equilibrated by the resistances of two

fixed points in its plane, and therefore the problem is ren-

dered indeterminate by a third fixed point in that plane.

The problem being determinate only when the direction

of the resulting force, or the plane of the resulting pair is

perpendicular to the plane of the triangle made by joining

the three fixed points, it may be proper to show how to find

the pressures made on those points, by such forces or pairs.

For the pressures made by a force z, whose direction is

perpendicular to the plane of the triangle ahc : let o be the

point where the plane is met by the direction of this force

;

and from one of the three angles, as a, let the line ao be

drawn, meeting the opposite side, as at d; the force z may be

distributed on the points a and d: the portion sustained by

the point a, being

od

ad
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and that by the point d, being

ao
zx—j.

act

This last may be distributed on the points b and c ; that on

the point b, being

ao dc

ad be'

and that on the point c, being

ao db

ad be

'

If the sum of the pressures, or z, is represented by the

area of the triangle abc, the portion sustained by the point a

shall be represented by the area of the triangle boc: and the

sum of the pressures on b and c, by the four-sided figure

aboc. Moreover, this sum is distributed on those points, in

the ratio of dc to db ; i. e. in the ratio of the area of the tri-

angle aoc to the area of the triangle aob. Whence it follows,

that if from the point of the plane where it is met by the di-

rection of the force z, three lines are drawn to the angles of

the triangle, the force z being represented by the area of

this triangle, those at the three points shall be represented

by the areas of the triangles, into which it is so divided, that

at each angle, by the area of the triangle placed on the op-

posite side.

The same theorem will be true, though the point a

should fall without the area of the triangle abc ; the pres-

sure on the point d being then in a direction corresponding

to that of the force z, and the pressure on a in a direction

parallel but contrary.

The pressures made by a pair on three fixed points are

ascertained as follows : the plane of the pair being perpen-

dicular to the plane of the triangle, made by joining the fixed

points.
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Let the pair be resolved into two pairs, whose planes

shall contain two sides of the triangle. The pressures made

by each component pair are had by dividing its moment by

the line on which it is applied.

Or thus : from one of the angles, as a, let the line ad be

drawn to the opposite side, parallel to the plane of the pair.

(Fig. 33.) The pressures may be supposed, in the first in-

stance, to be made on a and c?; and putting g for the mo-

ment of the pair, as before, the pressure at a, and also that

at d, is

G

ad'

The pressure at d is supported at i and c, and the parts sup-

dc
ported at those points are expressed by the fractions -j-»

and 7-. Wherefore, the pressure at b will be

G dc

and that at c,

ad be'

G db

ad be'

If the line ad is bisected at o, and if from this point lines

are drawn to the angles of the triangle, the pressures at the

angles shall be proportional to the three triangular areas

;

the pressure at each angle being as the triangle placed on the

opposite side.

For if the sum of the pressures, taken without regard to

their signs, is —^, and if this is represented in magnitude by

the entire triangle ahc, its half, which is supported at a, may

be represented by the area of the triangle boo, and then the

four-sided figure baco, shall represent the sum of the pres-

sures on the points b and c, and this is divided between
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them in the ratio of dc to db ; i. e. of the triangle coa to the

triangle boa.

If the point d lies between the points b and c, it is evi-

dent that the pressures at a and d shall be of contrary di-

rections ; and that, in this case, the pressures at b and c cor-

respond in direction with that at d. But if d falls without

the triangle, the point b, or the point c, beyond which it falls,

shall sustain the pressure equal and contrary to the sum of

those sustained by the two remaining points.

If the directions of the resultant forces, or the planes of

the resulting pairs, are not perpendicular to the plane of the

triangle, they may be resolved in the plane, and in the per-

pendicular to the plane ; the pressures made by the forces

and pairs acting in the plane are indeterminate, but those

made in the perpendicular directions are fully determined.

If the body touches a plane in a single point, any force of

resistance which may be excited at that point, is perpen-

dicular to the plane. Therefore, when the forces of the

system are not in equilibrio, they may equilibrate with the

resistance, provided they are reducible to a single resultant,

directed perpendicularly towards the plane at the point of

contact. To see how these conditions may be expressed by

means of the quantities which enter into the general formulse,

let the point of contact be taken for the origin, and the

plane for that of xy, and the axes rectangular. Then, in

order that there should be a single resultant passing through

the origin, it is requisite that each of the moments l, m, n,

should be cypher. And in order that this same force should

be perpendicular to the plane, it is requisite that each of the

partial resultants x, y, should be cypher. Wherefore, for

equilibrium, it is requisite that each of the five following

equations should be satisfied,

X = 0. Y = 0. L = 0. M = 0. N = 0.

and these being satisfied by the forces of the system, there
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will be a single resultant, which passes through the origin in

a line perpendicular to the plane.

But besides the conditions expressed by the five equa-

tions given above, it is further required, that the resulting

force should be directed towards the plane. For if it is di-

rected from the plane, no resisting force is excited ; and

then, the six conditions are to be satisfied, as for a body per-

fectly free.

The pressure on the point of support is the force z

;

which is the sum of the forces resolved in directions perpen-

dicular to the plane, and transferred to the origin in parallel

directions. When the equilibrium is established with the

resistances, this is the resultant of the forces of the system.

If the body touches the plane in two points, the only

forces of resistance which can be excited, are two such

forces, perpendicular to the plane at the points of contact

:

and as these are parallel forces, of corresponding directions

with respect to the line which joins the points of applica-

tion, they have a parallel resultant, applied at some inter-

mediate point. In order, therefore, that the equilibrium

may be established by means of such resistances, it is requi-

site that the forces of the system should be reducible to a

single resultant, directed perpendicularly towards the plane,

and to some point intermediate between the points of con-

tact. And when these conditions are satisfied, the forces

of the system will be necessarily equilibrated by the resis-

tances.

To see how these conditions are expressed by means of

the quantities which enter into the general formulas, let one

of the points be taken for the origin, the connecting line for

the axis of x, and the plane for that of xy. Then, in order

that there may be a single resultant perpendicular to the

plane o^ xy, it is requisite, in the first place, that each of the

quantities x and y should be cypher; for if either of these
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is different from cypher, r is oblique to the plane of xy :

then, if r can be compounded with g, the general resulting

moment, into a single resultant, this, which is the general

resultant of the system, is parallel to R, and, therefore,

oblique to the plane of xy : and if r cannot be so com-

pounded with G, the forces of the system are not reducible

to a single resultant. Whence it follows, that unless each

of the partial resultants, x and y, is cypher, the forces of the

system are not reducible to a single resultant perpendicular

to the plane of xy. Accordingly, the equations

X = 0. Y = 0.

are to be satisfied, z is the only partial resultant force that

now remains. This, being in the planes of the moments l

and M, may be compounded with both of these moments into

a single force, equal and parallel to z, and, therefore, per-

pendicular to the plane xy. But a force parallel to z, and

therefore perpendicular to the plane of n, cannot be com-

pounded with this moment into a single resulting force;

whence it follows, that the equation n =: 0. is also to be sa-

tisfied.

Further ; m may be compounded with z, and the resul-

tant is a single force equal and parallel to z, in the plane of

zx ; and this resultant of z and m may be compounded with

the moment l into a single force, which will be also equal

and parallel to z : but this resultant of z, m, and l, is not in

the plane of %x ; whence it follows, that the equation l = 0.

is also to be satisfied. Wherefore, the equations to be sa-

tisfied, are

X = 0. Y = 0. L =3 0. N r: 0.

The moment of m may remain, but under certain restric-

tions. For as it is requisite that the single resultant of the

system should be applied to the line connecting the points of

support, at a point not beyond those limits; it follows, that

the moment m should not exceed the product of z into the
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distance between the points of support, i. e. putting a for

that distance, m should not exceed za. For m compounds

with z a force equal and parallel, in the plane of zx ; and ap-

plied at a point of the axis of x, whose distance from the

... M
origin IS am — . Wherefore, if m exceeds za, x shall be

z

greater than a, i. e. the final resultant of the system shall be

applied to the line connecting the points of support, at a

point in that line produced beyond them.

It is to be further observed of this moment, that if it is

applied on the axis of a;, the force which corresponds in di-

rection with z, must be that which has the greater positive

or the lesser negative abscissa. For, were it the contrary,

the moment m, however small, when compounded with z,

would remove its point of application, out of the origin, on

the side of the negative abscissae, i. e. beyond the limits pre-

scribed for the point of application of the final resultant, in

the case of equilibrium.

The magnitude of this final resultant is z, the sum of the

forces of the system resolved in directions parallel to the

axis of %, i. e. perpendicular to the plane of support ; and

the abscissa of its point of application on the axis of x, is

given by the equation x — —

.

The pressures on the points of support are now imme-

diately found. For putting p for the pressure at the origin,

and q for that at the other point of support, we have

. . z.(a~x)
p : z : a—x : a. giving^ :i= —^ -.

q : z '. X '. a. giving a zz ——

.

a

i. e. putting for x its value,

za—

M

M
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If the body touches the plane in more than two points ar-

ranged in the same right hne, all but the extreme points are

useless for the establishment of equilibrium. For, if the

forces of the system have a single resultant applied between

any two of the points, a fortiori, it will be applied between

the extreme points. Wherefore, the question relative to the

conditions of equilibrium is to be treated as if the body

touched only at the two extreme points. But in the esti-

mate of the pressures on the points of support, a great

change is made, as it becomes impossible to ascertain any

thing more than the sum of the pressures, when there are

more than two points of support, and these in the same right

line regarded as inflexible. For certain pressures may be

removed from two points to an intermediate point ; the pres-

sures so removed, being reciprocally as the distances to

which they are removed. And conversely, any pressure

sustained by a point may be distributed upon two other

points, between which it is placed, in portions, which are re-

ciprocally as the distances of the point so exonerated, from

those to which the pressure is transferred.

If the body touches the plane in three points not ar-

ranged in the same right line, there may be so many forces

of resistance excited : and the direction of each of these

forces of resistance is perpendicular to the plane. These

constitute a system of parallel forces of corresponding di-

rections : therefore they are reducible to a single force equal

to their sum. The point of application of this resultant is in

the area of the triangle made by joining the points of sup-

port. Hence it follows, that in order to equilibi*ate with the

resistances, the forces of the system must be reducible to a

single resultant perpendicular to the plane, and directed to-

wards some point, not exterior to the triangle, made by

joining the points of support. And when these conditions

are satisfied, the equilibrium shall be necessarily established

by the resistances: inasmuch as such a force can always
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he distributed on the points of support, and in parallel di-

rections.

To see how these conditions may be expressed, by means

of the quantities which enter into the general formulae, let

one of the points of contact be taken for the origin ; the line

connecting it with a second point for the axis of a:; the plane

for that of xy\ and the axes rectangular. Then, in order

that the forces of the system may have a single resultant

perpendicular to the plane, it may be proved, as in the last

case, that x, y, n, should be, severally, equal to cypher.

There will then remain the partial resultant z, and the two

moments l, m. It is not required that either of these mo-

ments should be cypher, as both may be compounded with

z into a force equal and parallel to z ; the effect of the mo-

ment M being to remove its point of application from the

origin, to a point of the axis of x, whose distance from the

origin is

M
xzz. .

z

and that of the moment l, to remove it to a point in the axis

of y, whose distance from the origin is

L

and the effect of both, conjointly, is to remove the point of

application of z, to the extremity of the diagonal of a rect-

angle, whose sides, measured from the origin on the axes of

X and y, are

M L

z
*

z
*

This point must not be exterior to the area of the tri-

angle made by joining the three points of support: and on

this principle, the limitations by which the magnitudes of l

and M are restricted, are easily found.
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The pressures on the three pohits are known, when the

point of application of the general resultant is known ; and

this is given by its coordinates, viz.

_ M _ L
~ z * ^ ~~ z'

Let it be the point o within the area of the triangle ahc,

(Fig. SS) formed by joining th§ points of support. The

force applied at o, is the force z, and this is to be dis-

tributed on the points a, b, c. Therefore, drawing the

line ao, meeting the opposite side at d, the pressure z may

be distributed on the points a and d; the parts being, re-

spectively,

od ao

ad' 'ad'

The latter of these is distributed on the points b and c, in the

ratio of dc to db. Wherefore, if from o, lines are drawn to

the angles of the triangle, resolving the whole area into three

triangular areas ; the pressures on the three points shall be

proportional to the areas of these triangles ; that on each

point being represented by the area of the triangle placed

on the opposite side. For if the total pressure z, is repre-

sented by the area of the entire triangle abc, that on the

point a, shall be represented by the area boc ; this being to

the whole area, in the ratio o£ od to ad: and therefore, the

pressure on d, shall be represented by the sum of the two

remaining triangles boa, coa. But the pressure on d is di-

vided at b and c, in the ratio of dc to db ; i. e. of the triangle

coa, to the triangle boa.

When the body touches the plane in more than three

points, the resistances, when excited, must compound a

force perpendicular to the plane, at some point within the

polygon formed by joining the points of contact; omitting

those points at which the angles are re-entering. Where-

fore the forces of the system, to be capable of being equili-
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brated with such resistances, must have a «ingle resul-

tant directed perpendicularly to the plane, at some point

within the area of that polygon ; and when this condition

is satisfied, the equilibrium is necessarily established by

the resisting forces. For the resultant of the system may

be resolved into parallel forces bearing on three or more

of these points, where they will be necessarily equili-

brated.

In all cases, the sum of the pressures is the sum of the

forces of the system resolved in directions perpendicular to

the plane ; but if the points of contact are moi'e than three,

the distribution of the pressures is indeterminate. This is

no more than must have been expected : for the point of ap-

plication of the general resultant being within the area of

the polygon, it is within the area of some one of the tri-

angles into which the polygon is resolvable. Accordingly,

the pi'essure may be totally distributed on the angles of

this triangle. The pressures thus supported, may then be

variously transferred to lines drawn between the other an-

gles of the polygon, and intersecting the sides of that tri-

angle; and the pressures laid on each of these lines, divided

on their extreme points.

In general ; whatever be the nature of the surface or sur-

faces in contact with the body, and whatever the number of

the points of contact, the equilibrium will be established

by means of the resistances, whenever the forces of the

system are reducible to another system of forces, bearing

perpendicularly against any number of those points, and not

otherwise : and the pressure at each point will be the force

directed against it, unless so far as this pressure may be dis-

tributed, in the whole or in part, on any of the other points

of support.

This account of the pressures relates to a system in equi-

librio. To estimate the strains on the several points of a

G
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system in motion, the forces required to produce those mo-

tions are also to be considered. The actions of the several

points are then the resultants of those forces and of the re-

sistances here treated of; and the strains are equal and op-

posite to these resultants.
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SECTION VI.

OF THE CENTRE OF GRAVITY.

1. The theorems already established, relative to forces

applied to a point or to a system of points, are altogether

independent of the particular sources from ^vhence those

forces are derived. Those theorems are, therefore, equally

true, whether the forces are those supplied by animal

strength, or those by which the particles of matter naturally

influence each other. Of this latter kind is the force of gra-

vity, and as this constantly offers itself to our notice, as one

of the conditions from which the solution of mechanical ques-

tions is to be derived, it becomes requisite, in an especial

manner, to consider the laws of its action on terrestrial bo-

dies, and the manner in which it is to be treated.

It is well known of all bodies near the earth's surface,

that they tend to descend, each in a direction perpendicular

to the horizon of the place ; and that when this tendency is

counteracted, a pressure is sustained, which is denominated

the weight of the body. The descent of bodies when free

to move, and the pressure when the motion is restrained,

are, both of them, manifest indications of the action of a

force; and this force is denominated the force of gravity.

The force of gravity accelerates all bodies equally ; i. e.

it generates in them equal velocities in equal times ; for it is

found that in vacuo, the lightest feather and the most pon-

derous substance descend together as if they were parts of

the same mass. And the same thing is yet more satisfac-

torily established by observations made with the pendulum,

as shall be shown hereafter. This being admitted, it follows

that the force of gravity acts equally on all the units of mass,

g2
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and in parallel directions. Thence arises a system of equal

and parallel forces applied to the several units of mass of

which the body consists ; and the resultant of these is equal

to their sum. Wherefore, denoting the force of gravity act-

ing on the unit of mass, i. e. its weight by g, and the mass of

the body, i. e. the number of units in that mass, by m, and

putting w for the weight of the body, there is

W = M^. (1)

Hence, g being the same for all bodies, " The weights of

bodies are proportional to their quantities of matter."

From the foregoing equation it appears that the " force

of gravity" and " the weight of a body" are not expressions

of the same import. By the former is meant the intensity

of the power as it exists in nature, whose measure is the

force with which it acts on the unit of mass; by the latter is

meant the force of gravity as applied to the particular body

under consideration ; and this depends not only on the in-

tensity of the force as it exists in nature, but also on the

number of such units in the mass of the body on which it is

exerted.

The quantities of matter in bodies being proportional

to their weights, and the weights of bodies of the same bulk

being exceedingly various, it is evident that there must exist

the widest differences, with respect to the condensation of

the matter of which they consist. The relation between the

quantity of matter in a body and its bulk or volume, is that

which is meant by its density ; and, therefore, the densities

of bodies are as the quantities of matter contained in a given

volume. But in comparing the densities of different sub-

stances it is found convenient to refer them all to the same

scale, agreeably to what has been done with respect to the

quantities which enter into equation (1). This is at once ef-

fected by fixing on some one substance, whose density is to

be regarded as the standard of comparison, and, therefore,

as the unit of the scale of densities. Various considerations
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concur, to render water the most eligible for this purpose.

But the density of water itself is known to vary, according to

the quantity of foreign matter which it may hold in solution
;

and also, according to its different degrees of temperature.

The uncertainty which would follow from the former source

is avoided, by taking distilled water; and that from the lat-

ter, by taking the water at its maximum of condensation,

which corresponds to a temperature of 40° of Fahrenheit, or

somewhat more than 4° of the centigrade thermometer.

Therefore, putting unity for the density of distilled water of

this temperature ; the densities of bodies, which in the same

volume, contain twice or thrice the quantity of matter, are

denoted by the numbers 2, 3, and so forth ; the quantities of

matter being compared, by means of the weights to which

they are proportional.

When, therefore, the quantities of matter are estimated

by the volumes, it is on the supposition that the densities are

equal; but if these are. unequal, the numbers which express

the ratio of the volumes, must be multiplied by those which

denote the densities : and the quantities of matter in different

bodies are proportional to these products. This is expressed

by the equation

M = VD (2);

in which m, v, and d are numbers denoting the ratios of the

quantities for which they stand to their several units of mea-

sure. Thus, if a cubic inch is taken for the unit of volume,

and the density of water for the unit of density, then the

quantity of matter in a cubic inch of water shall be the unit

of mass : and for any body whatsoever, in the last equation,

V shall denote the number of cubic inches in its bulk or vo-

lume, D its density with respect to that of water, and m its

mass, in relation to that of a cubic inch of this fluid. Sub-

stituting in equation (1) this value of m, there is

'>y-y'J)'g' (3)

wherein g denotes the weight of a cubic inch of water.
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This weight is converted into grains by putting for g in the

last product 2o2.db2, the number of grains contained in that

volume of water.

2. As in all positions ofthe body with respect to a horizon-

tal plane, the same forces of gravity are applied to the same

points, and in parallel directions, these forces must have a

centre, i. e. in a body, considered as an invariable system of

points, there is a certain point through which, in all positions

of the body, the resultant of those forces passes ; and to

which point it may therefore be supposed to be immediately

applied. This point was generally named the centre of pa-

rallel forces ; but when the forces are the gravitations of the

constituent parts, it is especially designated by the name of

the centre of gravity.

This reduction of the weights of the several molecules of

a body to a single resultant applied to an invariable point, is

of great use in the solution of all questions in mechanics,

wherein the weights of bodies are concerned: for instead of

an indefinite number of forces and their points of application,

we have only to consider a single force, which is the weight

of the body, and its point of application, which is the centre

of gravity ; and having added this force to the others given

by the conditions of the question, we can proceed to apply

the statical theorems already established relative to forces

acting on a system of material points destitute of gravity.

In seeking the centre of gravity of a body, it is to be ob-

served, that if the density is the same throughout the mass,

the eqvial forces ai'e aj^plied at equidistant points, in which

case the position of the centre of gravity will depend alto-

ther on the figure : and this supposition of homogeneity is

always made in the investigation of the centres of gravity of

geometrical figures. But if the density is not uniform, the

body being supposed to be divided into particles of a given

mass, the number of these contained within a given space

will be various : i. e. the points to which equal forces are ap-

plied will be more condensed in one part of the body than in
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another ; in which case, the position of the centre of gravity

shall depend, not on the figure only, but also on the way in

which the matter is distributed throughout the volume, i. e.

on the relative densities of the parts.

This being premised, we shall proceed to illustrate the

methods by which the centre of gravity of a body or system

of bodies is ascertained, and then to give an account of the

chief properties of this point.

3. The methods of finding the centre of gravity are the

same as those given for finding the centre of parallel forces,

the symbols p, p', p", &c. by which the parallel forces had

been denoted, now denoting the weights or the masses to

which they are proportional.

According to the first of these methods, described in

Sect. II. Art. 6. the distance between two elements of the

system is divided in the inverse ratio of the masses or

weights : the point, by which the connecting line is so di-

vided, is the centre of gravity of those two elements, whose

sum is then to be regarded as concentred in this point. The

line connecting this point with a third element is, in like man-

ner, to be divided in the inverse ratio of the weights con-

nected by it. The common centre of gravity of three ele-

ments being thus found, and the sum of their weights being

supposed concentred in it, the same process is to be conti-

nued until all the weights are united in one point, which will

be the common centre of gravity of the entire system.

If the masses are equal, the rule now delivered will be

reduced to the following. The line connecting two of those

masses is to be bisected. The line connecting this point of

bisection with a third of those masses is to be divided in the

ratio of 1 : 2. That connecting this point of division with a

fourth of the masses is to be divided in the ratio of 1 : 3. and

so-forth, i. e. one-half is to be taken from the line connecting

the two first points; one-third from the line connecting the

point thus found, with a third of the given points; one-fourth

from the line connecting the point thus found, with a fourth
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of the given points, and so-forth. The points thus succes-

sively found are the centres of gravity of the parts so com-

bined; and the last, the common centre of gravity of the

whole system.

If the body, whose centre of gravity is sought, is of con-

siderable magnitude, the subdivision into parts, such as

might be regarded as physical points, and the treatment of

these, according to the method now described, might be ex-

ceedingly tedious. But if the centre of gravity of any por-

tion of the body is already known, the labour of computation

is diminished^ by supposing the weight of that portion con-

centred in its proper centre of gravity.

Thus, if an indefinite number of material points of equal

weight were uniformly arranged along the sides of a polygon,

the centre of gravity of those in any one line is the middle

point of that line: and by supposing the weights, in each

line, united at the middle point of that line, the problem is

reduced to that of finding the common centre of gravity of a

system of weights, equal in number to the sides of the poly-

gon ; the weights themselves being proportional to those

sides, and applied at their middle points.

If a physical surface is symmetrically divided by a certain

right line, the centre of gravity is in this line : and if it is

symmetrically divided by another line also, the centre of gra-

vity is, at once, known to be at the intersection of the lines

by which it is so divided. Also, if a solid is symmetrically

divided by a certain plane, the centre of gravity is in that

plane ; and if it is divided in like manner by a second plane,

the centre of gravity is in both planes, and therefore, in the

line of intersection : and if it is so divided by a third plane,

the centre of gravity is at once determined to the single point

common to the three planes. Thus the area of the triangle

ABC, being divided into elementary trapezia, or physical lines

parallel to any one of its sides bc, as in (Fig. ol-.) ; the centre

of gravity of each physical line is at its middle point, where

accordingly its weight may be supposed to be applied : and
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as all such points of bisection are situated in the line drawn

from the angle a to d, the middle point of the opposite side

BC, it is plain that the common centre of gravity of all these

elements, or the centre of gravity of the area of the triangle

is in the line ad. For the same reason it is in the hue be,

(Fig. 35.) drawn from another of the angles b, to e, the mid-

dle point of the opposite side ac : and therefore it is at g,

the point where the lines ad, be, intersect. It remains only

to determine the distance of g, from any one of the angles,

measured on the right line drawn from that angle to the

middle point of the opposite side. Now the sides ac, bc,

being bisected at e and d, the hne ed is parallel to the third

side ab: wherefore, the triangles ced, cab, as likewise the

triangles e^d, a^b, are similar. The latter pair give the fol-

lowing proportion

:

Afl- : ffT) : : ab : ed.
to

and the former give

ab : ED : : BC : DC : : 2 : 1.

wherefore,

A^ zz 2^D. i. e. kg zz fAD.

The centre of gravity of the area of a triangle is then the

same as that of three equal bodies, applied at its three angu-

lar points ; since it is found by the same rule, viz. by bisect-

ing one of the sides, and dividing the line drawn from the

point of bisection to the third angle, in the ratio of 1 : 3.

Knowing how to find the centre of gravity of a triangle,

that of any right lined polygon is readily found; inasmuch

as any such polygon may be resolved into triangles, whose

weights, proportional to their areas, may be supposed con-

centred in their respective centres of gravity. The problem

is then reduced to that of finding the common centre of gra-

vity of so many weights applied at these points ; which may

be done by the method of successive composition already

described.
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A triangular pyramid being resolvable into physical sur-

faces parallel to any one of the triangular faces, it is evident

that the centres of gravity of these surfaces are arranged in

the same right line, drawn to the centre of gravity of the pa-

rallel face from the opposite angle. For the like reason, it

must be also in the right line drawn to the centre of gravity

of any of the other triangular faces, from the angle opposed

to it ; and, therefore, it must be at the intersection of two

such lines.

Thus, in (Fig. 36.) bisecting dc in e, and in the line be,

drawn from the opposite angle of the triangle, taking Bg
—

I BE, the point g is the centre of gravity of the triangular

face BDC ; and that of the pyramid is in the right line A^,

drawn to this point from the opposite angle. In like manner,

taking a^' zz | ae, and drawing b^' ; the centre of gravity of

the pyramid is also in this line Bg'. Now as a^, b^"', are in

the same plane, viz. that of the triangle aeb, they must in-

tersect as at g" : wherefore, this point g'\ is the centre of

gravity of the pyramid.

All that now remains, is to ascertain the distance of the

point g", from either of the angles a or b. In order to this,

it is to be observed, that e^' : ea : : e^ : eb ; wherefore, the

lines g'g and ab are parallel : and therefore the triangles

g'gE, ABE, as also the triangles gg'g", Ag"b, are similar: ac-

cordingly,

Ag" : g"g : : ab : g'g : : ae : g'E : : 3 : 1.

which gives

AS =Z 0.£f i^ — ^AST.

Showing that the centre of gravity of a triangular pyramid is

in the right line, drawn from any one of the angles to the

centre of gravity of the opposite face ; at a distance from the

angle which is f of this line.

The centre of gravity of a triangular pyramid is then the

common centre of gravity of four equal bodies, applied at its
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four solid angles ; those centres being found by the same

rule. In both cases, the line connecting two of the angles is

to be bisected : the line drawn from this point of bisection to

a third angle, is to be divided in the ratio of one to two : and

finally, the line connecting the last point of division with the

fourth angle, is to be divided in the ratio of one to three.

The rule for determining the centre of gravity of a tri-

angular pyramid, may be extended to pyramids standing on

polygonal bases. For any such polygon may be resolved

into triangles ; and, therefore, the pyramid into triangular

pyramids, having the same summit, and those triangles for

their bases. The centre of gravity of each of the triangular

pyramids, and, therefore, that of the entire pyramid, shall

be in a plane parallel to the base, at a distance from the sum-

mit equal to | of the altitude. It shall also be in a right line

drawn from the summit to the centre of gravity of the base.

Wherefore, it is at the point of this line where it is inter-

sected by that plane, i. e. at a distance from the angle equal

to I of its length.

In prisms, this resolution into pyramids is unnecessary

;

for the sections parallel to the bases being all similar, their

centres of gravity are in the same right line; and these sec-

tions being moreover equal, their common centre of gravity

is evidently the middle point of the line, which joins the cen-

tres of gravity of the parallel bases.

What has been proved relative to the centre of gravity of

a pyramid, standing on a polygonal base, is evidently appli-

cable to a cone ; which may be regarded as the limit of the

inscribed or circumscribed pyramids, and in which limit they

end, when the sides become infinite in number. Wherefore,

the centre of gravity of a cone is in the axis, at a distance

from the summit equal to | of its length.

In like manner, what has been shown of prisms may be

extended to cylinders standing on any curvilinear bases

whatever.
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The centre of gravity of a sphere or spheroid is obviously

at the centre ; as each of these figures may be divided sym-

metrically by three planes, all passing through this point.

4. The method of finding the centre of gravity, by re-

ference to three coordinate planes, is that explained in

Sect. II. Art. 7.

If the body, or system of bodies, whose centre of gravity

is sought, is divided into equal masses, we shall have

p = p'= p", &c.

wherefore, putting n for the number of these equal masses,

those theorems will become

X -\- x -\-x" -\- x" 4" &c.

n

n

z J^ z' + z" -\- z" + &c.
z iz: •

.

n

The equations may be always presented in this form, and

they show that the distance of the centre of gravity from any

plane, is the sum of the distances of the equal masses divided

by their number: or that it is the mean distance of the

weights of the several parts, and, therefore, that the centre

of gravity is the centre of the mass.

If the body is homogeneous, i. e. of uniform density, the

equal masses, into which it is divided, will have equal vo-

lumes ; and the centre of gravity will be then the centre of

magnitude. From this and Art. 3. it appears, that the dis-

tance of the centre of gravity of a triangle from any plane,

is the mean distance of its three angles from the same.

And that the distance of the centre of gravity of a trian-

gular pyramid from any plane, is the mean distance of its

four angles.

The formula of Sect. II. Art. 7. may be presented in a

more abridged form, by putting
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s (p . a:), for p . o: + P •V+ P "x"+ &c.

the character 2, denoting the sum of all quantities corres-

ponding to that to which it is prefixed. In the same man-

ner, 2 (p) is put for p +P'+ p"4- ^c., and the same notation

being extended to the other two formulae, they are thus pre-

sented :

2(P) ' S(P) ' 2(P)

It is seldom that we have occasion for all these formulae

:

for if the centre of gravity is known to be in a certain plane,

its distance from the plane being cypher, the product of this

distance into the whole mass is also cypher : and therefore,

also, the sum of the products uf the partial masses into their

respective distances from the same plane is cypher, the sum

of the products of those which lie at one side into their dis-

tances from the plane, being equal to the sum of the pro-

ducts, similarly made out, for those which lie at the other

side of the plane, and with contrary signs. And conversely;

if the sum of the products be cypher, the distance of the

centre of gravity is also cypher.

When any such plane is known, it may be taken for one

of the coordinate planes, as for example, for the plane of xy,

and we shall then have

2 (p..^) Z= 0. Z 1= 0.

and the problem for finding the centre of gravity is solved by

the two first equations, which give its distance from the axes

of a; and ;y. Wherefore, "when the centres of gravity of

the bodies of a system lie all in the same plane, the common
centre of gravity is found by its distance from each of two

axes in the same plane ; the distance from each axis beinff

had by multiplying each body into the perpendicular dis-

tance of its centre of gravity from that axis, and dividing the

sum of those products by the sum of the masses,"
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If the centres of gravity of the bodies, or partial masses,

lie in the same right line, by taking this line for the inter-

section of two of the coordinate planes, as of the planes zjc,

yx\ those centres being in each of these planes, the common
centre of gravity shall be in both. Wherefore,

z r= 0. and y zz: 0.

and the third equation will suffice, which gives the distance

of the common centre of gravity from a plane perpendicular

to the axis of x ; i. e. from a certain point on that line itself.

Wherefore, '^ when the centres of gravity of the bodies of

the system, or of the partial masses, lie all in the same right

line ; the common centre of gravity is on the same line, and

its distance from an assumed point of that line is found, by

taking the sum of the products of the several bodies or

masses into their respective distances from that point, and

dividing by the entire mass.

Let it be proposed to find the centre of gravity of the pe-

rimeter of a plane polygon bcdef, (Fig. o7.) by means of the

coordinates of its angles.

The centres of gravity of the several sides, being at the

middle points of those sides, are all in the same plane

:

wherefore, drawing two axes in this plane, viz. a?/, kx, and

denoting by x, y, the coordinates of the point b ; by x\ y,

those of the point c ; by x", y", those of the point d, &c. and

bisecting the sides bc, cd, de, &c. at the points o, o, o", &c.

the coordinates of the point o, shall be

X \- x' y 4- //
T}

• o '

those of the point d shall be

X -\-x y \-y

2 ' 2 '

those of the point o" shall be

X -\-

X

y + //
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and so of the rest. Then, putting p, p', p", &c. taken pro-

portional to the sides, for the weights apphed at the middle

points of those sides, and making these substitutions in the

general formulae, we have

__ P (.^: 4- a:') + p^ (.r> x") + p"{x"+ x'") + &c.^~
J^(p + p'+p")+&c.

_ V (;/ + ?/) + y'
(;/4- f)+ ^"(/+ f) + &c.

'^ ~
2 (p + p'+ p") + &c.

Showing, that each of the coordinates of the centre of gra-

vity of the perimeter of a polygon is had, by multiplying

each side into the sum of the corresponding ordinates of its

extreme points, and dividing the sum of these products by

twice the perimeter.

To find the centres of gravity of curvilinear figures, the

aid of the integral calculus is generally requisite. The dif-

ferential of the figure is to be multiplied into each of its

three coordinates ; each of these products being made a

function of a single variable, by means of the equations of

the figure, is to be integrated within the proposed limits

:

the definite integrals thus obtained, are the numerators of

the values of x, y, z, the coordinates of the centre of gra-

vity. Their common denominator is the magnitude of the

figure obtained by integrating its differential in like manner.

Thus, for a curve whose length is s, the general formulas,

by which the coordinates of the centre of gravity are ex-

pressed, will be

s s s

The differential ds being

V {dx^-{-d?f-{-d%'').

the product of this by its distance from the plane of x?/, i. e.

sds is

s!, V {dx"" + dy" + dz").
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This being converted into a pure function of z, by means of

the equations of the curve, and integrated, the extreme va-

lues of z are to be substituted ; the difference of the result-

ing quantities is the numerator in the vahie of z. Its deno-

minator, s, is the definite integral of

to be obtained in the same way. The values of x and y, are

found by a similar process.

If the curve is of single curvature, it is evident from what

has been already observed, that the problem may be solved

by two of the equations : and if it is situated symmetrically

with respect to a certain right line, that one of those ecjua-

tions will suffice.

For example ; let it be proposed to find the centre of

gravity of a circular arc.

The arc being placed symmetrically with respect to the

radius drawn to its middle point, this radius may be taken

for the axis of x ; and the problem will be solved by means

of the equation

s

in which,

ds = V {dx'' -{- f/;/).

The origin being taken at the centre, the equation of the

curve IS

which gives,

909
y — r-- x-

dx^ zz. 'At. df/^.
x^ -^

Substituting this value, and integrating, there is

$.r. ds :z r . y -{- c.

Let b and — b, be the values of //, at the extreme points
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of the arc ; these are to be successively substituted ; and one

of the resulting quantities being subtracted from the other,

the definite integral is 2r.h. Wherefore,

2b.

r

X rz .

s

showing, that the distance of the centre of gravity of the arc

from the centre, is a fourth proportional to the arc itself. Its

chord and radius.

For the semicircle,

2r •

s — irr. b r= r. g^vmg x =: —

.

3r

and therefore,

n

which shows, that the radius of a circle is equal to tlie

quadrantal arc of another circle, whose radius is the distance

of the centre of gravity of half the periphery of the former

from its centre.

Let it be proposed to find the centre of gravity of a

cycloidal arc.

This curve is generated by the motion of a point taken

in the periphery of a circle, whilst the circle revolves in its

own plane, on a right line.

Let AB (Fig. i38.) be the line on which the circle revolves,

or the base of the cycloid ; v its vertex or middle point ; vd

its axis, which is also the diameter of the generating circle.

It is evident that the two branches, va, vb, are symmetrical

about the axis ; and that if equal arches are measured from

V, their centres of gravity shall be equidistant from the axis

vd, and also from the base. Wherefore, the common centre

of gravity of the two equal arcs shall be at the same distance

from the base, and in the axis vd. Accordingly, taking v

for the origin, and vd for the axis of cc, it will be sufficient to

find the centre of gravity of an arch at either side of vd.

H
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For any point, tn, there will be

A^j zz axc^ini zz arc Dr.

therefore,

pv) or mr zz arc vr.

and

7}iq = arc = vr -f- f'^'

i. e. putting a, for vd,

t/ = arc (verse sine rz x) + V {'^^~-^'}'

and

a

dx
2~^

iJy zz + -77 ^ . dx
"^ sm.arcvr ^/{ox—x'')

a a

-^-. o^.r + —-. or. dx.

that is,

-y/ {ax—X')' '

-v/ («a; — .r")

(a—x)dx \/{a— x) .

dv zz —- = -^—H . dx.
^ V {ax—x-) ^/ X

Accordingly,

ds zz \J {dx^-\- dif) = V -. dx. and s—9.\J ax.

Also,

\ a:(/s zz a~ \x^. dx zz
2 1 A

In these integrations, no constant quantities are added,

as both members of each equation vanish together, for

0;= 0.

X = S"^

2 i 5

ds Q « • '^

vphich shows, that if a line is drawn through the vertex, pa-
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rallel to the base, the perpendicular on that line, from the

centre of gravity of an arch measured from the vertex, is

one-third of the perpendicular distance of its extreme point

from that same line ; and, therefore, that the centre of gra-

vity of a cycloidal arc bisected at the vertex, is in the axis,

at a distance from the vertex equal to one-third of the sa-

gitta of the arc: and that the distance of the centre of gra-

vity of the entire curve from the same point, is 77.

The differential of a plane surface is ydx\ wherefore,

the formulae for its centre of gravity are,

$ x.y.dx 5 y^. dx
~ %y.dx

' ~ ^y.dx'

If the surface is symmetrical about a certain right line, it

is evident that it may be resolved into elements, whose cen-

tres of gravity are in that line : and that if the same line is

taken for the axis of the abscissae, the first of these equa-

tions will suffice.

Example.—Let it be proposed to find the centre of gra'

vity of a trapezium abcd, (Fig. 39.)

If the trapezium is resolved into elements by lines pa-

rallel to ADj it is evident that the right line ef, which bisects

the parallel sides ad, bc, shall pass through the centre of

gravity of each element : wherefore, it will be convenient to

make it the axis of the abscissae. Let f be the origin,

EF r= a ; AD = 6 ; EC 3= Z>'; ¥m =: x ; 7nn zz y. Then,

aM+{b~ b')x
2 11 zz .

a

If the angles at a and d are equal, y shall be perpen-

dicular to the axis oi x\ and the element of the area shall

be

a

and
11 2
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- [aM.x+{b-h')x'''\dx
2x.r'.dx — ^ —-—

.

Wherefore^

and

and

_^lx.y.dx _ 3aM.x + ^{h-b')x'^

2lt/.clx ~ 6a.b'+3{b~f/)x '

In these integrations, no constant quantity was added
;

because, for x zi 0. both members of each equation vanish

together.

If the angles at a and d are unequal ; or which is the

same thing, if the line ef is oblique to the parallel sides, ad,

BC, the same determination will serve ; as will appear by put-

ting j3 for the angle fed, contained between the axis and

the ordinates. Then, each element is

2sm.p.y.dx.

and

_2sm.^.lx.t/.dx _ %x.y.dx

2sin.j3. $2/.c/a7 ~ ^!/-(^^

Taking the value of x for a; z= a. it is

a{b'+2b)
~ S{b'+b)'

This solution may serve for a triangle or parallelogram. For

the former, by making b'zz 0. in which case,

2

and for the latter, by making b'—b; in which case,
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a

Example.—Let it be proposed to find the centre of

gravity of the segment of a circle, whose equation, taking

the centre for the origin, is

2 2 2
2/
— r — X .

The centre of gravity of the segment is evidently in the

radius by which the arc is bisected. Wherefore, taking this

for the axis of the abscissae,

_2'\^x.y.dx _2^\/ {r^— x^)x.dx _
~ area area *

~~

area

Taking the integral from x zz. a io x zz-r; in which last

case its value is c, the value of y being then cypher, we

have

X =.
area

For the centre of gravity of the area of the semicircle,
o

TV T
making a z: ; and putting for the area, its value, —y-\

there is for this case,

4r
^ = -37-

The sector cmvn, (Fig. 40.) is composed of the segment

mvn, and of the triangle men. The centre of gravity of the

triangle is in the same radius, by which the arc mn is bi-

sected ; and at a distance from c equal to f cd. Wherefore,

the distance between the centres of gravity of the triangle

and circular segment is known ; and if this distance is divided

in the inverse ratio of the areas, the point of division will be
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the centre of gravity of the sector. This process is, how-

ever, unnecessary. For if with the centre c, and a radius

equal to | cv, an arc is described, bounded by the hnes

Ci?i, en, this arc is the locus of the centres of gravity of the

indefinitely small and equal sectors into which the sector

cmvn is resolvable ; those elementary sectors being regarded

as right lined triangles. Moreover, these elementary sectors

being equal, and their centres of gravity being uniformly

arranged along this arc, their common centre of gravity, i. e.

the centre of gi'avity of the entire sector, must be that of the

arc: hence, it follows, that the distance of the centre of

gravity of a sector, from the centre of the circle, is a fourth

proportional to the arc, its chord, and f of its radius.

Example.—For the centre of gravity of the segment of

a parabola, whose equation is i/^ — px, the diameter being

taken for the axis of the abscissae, and the vertex for the

origin, we have

^y.x.dx_ 3

5 //. dx ~ 5
"^

*

In these integrations, no constant quantity is added, be-

cause for X zz: 0. each integral is, evidently, cypher.

It is also evident from the observation already made,

that the same formula will serve whether the ordinate s are

perpendicular or oblique to the diameter, i. e. whether the

diameter which bisects the chord of the segment is the axis

or not.

In figures of revolution, the axis of rotation being taken

for the axis of the abscissas, it is plain that the first of the

three general equations of Art. 4, will serve for the deter-

mination of the centre of gravity.

If it is proposed to find the centre of gravity of a surface

of revolution, the element of the generating curve is

ds- V {dx- + elf) ;

and the element of the generated surface is
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_%xy y/{dx'^-\-df)

S y V {dx'-\-dy'^)
'

in which, substituting for y, dy, their values in x, collected

from the equation of the generating curve, and integrating

within the proposed limits, the value of x is obtained.

Example.—The surface of a truncated cone is generated

by the revolution of a right line. Let CD be that hne, (Fig.

41.) and ab the axis round which it revolves. Then, putting

a for AB ; b for bd ; and b' for ac, there will be

a.b' + {b-byv
2/ =

and

Therefore,

, (b — b') dx
dy — ^

,

a

The invariable coefficient of dx, occurring in the nume-

rator and denominator of the value of x, may be suppressed.

Wherefore,

_ ^y.x. dx

But the section of the conic frustum, in which is the axis,

is a trapezium, whose centre of gravity is in the axis of the

cone, at a distance from the lesser base expressed as above

;

whence it follows, that the centre of gravity of the sur-

face of the conic frustrum is the same as that of the sec-

tion of the solid, in which is the axis : and also, that the

centres of gravity of the surfaces of a cone and cylinder are

the same as those of the sections in which are their axes.
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Example.—Let it be proposed to find the centre of gra-

vity of a spheric zone, generated by the revolution of the cir-

cular arc mi, about the radius cv. (Fig. 40.)

Making this radius the axis of the abscissae, and the cen-

tre c the origin, the equation of the circle is

Wherefox'e,

and

V{d.v'+di/^=
'"'^^

V{r^-x')

1>/.V {dx-+ dif) - rx + c.

\xyyj[dx^^df)^'^^c.

Then, putting a for ct/ ; a for ce, and taking the integrals

between these limits, there will be

_ a —a _ a -\-a

Which shows, that the centre of gravity of the zone is the

middle point of the portion of the axis intercepted between

its two circular bases.

For the spheric segment there is a'=r; and in that

case,

r-A-ax= '

.

showing, that the centre of gravity of the surface of a spheric

segment is at the middle point of the sagitta.

In general, the equation of the surface of any geometric

ficrure being of this form

dz :=p.dx+ q^dy.

in which p and q are the partial differences of ^, with respect

to X and y, the differential of the surface is

y/{\+p''+q^)dx.dy.
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wherefore,

~ lWil+ F+q')cLv.d!/-

_ ll^y/[\+p'+q')dx.dj/

The double integrals are to be taken within the proposed

limits.

A solid of revolution is resolved, by planes perpendicular

to the axis, into cylinders or conic frusta, whose altitude is

dx. The value of one of these elements is

TTi/^dx.

and the product of this into the abscissa is

TTxy'. dx.

Wherefore,

__ ^y^xdx
~

S y'd^

'

in which, substituting for y its value in x, and integrating

as before within the proposed limits, the definite value of x

is obtained.

Example.—Let it be proposed to find the centre of gra-

vity of an oblong elHpsoid, terminated by two planes perpen-

dicular to the greater axis.

Putting a for the greater, j3 for the lesser semiaxis ; a

and a , as before, denoting the distances of the planes from

the centre, the equation of the generating elHpse is

wherefore.

s
7f-dx= -^v (^W-x— x^) -f c
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5
/32

Tliese integrals taken between the limits a and a, give

_6a^ {a'—a^)— 3 (a'^ — «^)

This expression, being totally independent of the lesser

axis of the ellipse, is applicable to the segment of a sphere.

If the ellipsoid were described about the lesser axis, the

expression for the distance of the centre of gravity would

differ from this only in the change of a for /3. Whence it

follows, that if the axis of the ellipsoid, whether oblong or

oblate, is made the diameter of a sphere, the segments of

these figures included between two planes perpendicular to

the common axis, shall have their centres of gravity at the

same point.

If the section, perpendicular to the axis of revolution,

passes through the centre, the distance of the centre of gra-

vity of the semiellipsoid, or hemisphere, will be had from the

foregoing, by making a = 0. And a = a for the oblong, or

a=j3 for the oblate ellipsoid, which gives

3
x = -a

for the one, and

for the other.

Example.—Let it be proposed to find the centre of gra-

vity of a paraboloid, generated by the revolution of a para-

bolic segment, whose equation is

substituting this value of y^ in the formula, there is

_ $ x^dx _ 2

5 xdx 3 '
*

In this equation there is no constant quantity.
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If the segment, whose centre of gravity is sought, is in-

cluded between two parallel planes, at the distances a and a ,

measured from the vertex ; these values of x, being succes-

sively substituted in each of the integrals, the difference of

the results must be taken for the numerator and the denomi-

nator of the value sought ; thus,

2 cP - a"

o a — a"

These examples may suffice to show how the integral cal-

culus is applied, to solve the problem for solids of revolution,

which figures are, evidently, capable of being resolved into

elements, whose centres of gravity are in a right line. The
centre of gravity of the entire solid being, then, on the same

line, its place is determined according to a single formula.

The general method to be used when such facilities do

not occur, is to resolve the solid into elements, by planes pa-

rallel to each of the three coordinate planes. The expression

for an element will then be

dx,dy.d%.

and that of the volume,

\Wdx.dij,dz.

and the three coordinates of the centre of gravity of the solid

are found, according to the three following formulae

:

^_'^^y^xAx^dyAz^

\\\,dx,dy.dz
'

\\\'dx.dy.dz
'

^_ ll^.s.dx.di/xh

m.dx.di/.d:2

The integral in each numerator and denominator is to be

taken within the proposed limits.

The centre of gravity of any one body of a given system

Y=
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is immediately found, if the centres of gravity of the remain-

ing bodies, as well as the common centre of gravity of the

system are known. For, having

mx + mx •\- m'x", See. = mx.

the ordinate of the centre of gravity of any one of the bodies,

as of m, is given by the equation

MX— (mV4- w^'V, &c.)x= ^ -.
m

and the other two coordinates of this centre are found in the

same manner.

When the centre of gravity of a body, and that of any

part of the same are known, that of the remaining part is

also known. For in this case, the centres of gravity of the

whole and of its two parts are in the same right line ; and

any two of the masses multiplied into the distances of their

centres of gravity from that of the third, give equal products.

Thus, if m and m denote the partial masses, and d, cV the

distances of their centres of gravity from the centre of gra-

vity of the sum, which is their common centre of gravity,

then f/'= —;•. for the distance of the centre of gravity of the

mass m , from the common centre of gravity.

Generally, whatever be the point to which, as to an

origin, these centres are referred, the coordinates of one of

those centres are found from those of the two others, by the

following equations

:

mx •\- (m—?7i) x'— MX.

mi/ -\- (u—?n) yzz my.

m% + (m— w) ^'— mz.

5. The centre of gravity was shown to a centre of parallel

forces, particularized by this circumstance, that the body

being resolved into equal masses, the forces applied to those

masses are not only parallel, but equal. And as such a
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system of forces may be compounded into one parallel force,

equal to their sum, which in all positions of the body passes

through the same point, denominated the centre of gravity

;

so, conversely, any single force directed through this point,

is resolvable into a system of equal and parallel forces, dis-

tributed upon the equal masses, into which the body may be

supposed to be divided.

Hence it follows, that there is no tendency to rotatory

motion produced in a rigid body, by a force directed through

its centre of gravity.

The properties of this centre, usually noticed, relate to a

body containing a fixed point, or incumbent on a plane sur-

face. The fixed point is denominated the point of sus-

pension.

The weight of a body, considered as a single force, being

applied at the centre of gravity, and directed in the perpen-

dicular towards the horizon ; and the resistance or reaction

of the fixed point being a force acting in the line by which

this point is connected with the centre of gravity, it follows

that these two forces cannot be directly opposed, and there-

fore cannot equilibrate, unless these two lines coincide, i. e.

unless the fixed point is in the vertical, passing through the

centre of gravity ; and that then, as the weight of the body

is directed through the fixed point, whose reaction is always

equal and opposite to the action upon it, the equilibrium is

necessarily established.

Accordingly, when the body is suspended by the centre

of gravity, the equilibrium is necessarily established, what-

ever be the position of the body round this point.

But if the point of suspension is different from the centre

of gravity, there are but two positions of the body in which

the forces are directly opposed to each other, viz. when the

centre of gravity is vertically above, or vertically beneath

the point of suspension : and these are the two positions of

equilibrium.



110 STATICS.—SECT. VI.

But equilibrium is of three kinds, viz. stable, unstable,

and neutral. It is of the first kind, when the body on any

slight change of position, returns to its former position : of

the second kind, when the deviation increases : and it is of

the third kind, when there is no tendency in the body to

recede further from its original position, or to recover that

position. It is evident that this last kind can exist, only

when the equilibrium continues under a continued change of

position ; and, therefore, that it can have no place in the

case now under consideration, wherein these are but two

positions of equilibrium.

To distinguish between the states of equilibrium when

the centre of gravity is vertically above or below the point

of suspension, it is only requisite to consider the direction of

the resultant of the two forces, when the centre of gravity

is out of the vertical passing through the point of suspension.

Let B be the body ; a the point of suspension ; o the centre

of gravity ; and ov the vertical passing through this point.

(Fig. 42.) The weight of the body applied at the point o,

acts in the direction of the line oi\ and the resistance of the

fixed point in the direction of ao ; towards the fixed point,

when the weight acts as a pull, \. e. when the angle voa is

obtuse, as in the figure ; and in the opposite direction, when

it acts as a pressure, i. e. when that angle is acute. The re-

sultant of these two forces must be directed within the angle

made by those lines ; and, therefore, must tend to carry the

centre of gravity downwards to the vertical passing through

the point of suspension.

Wherefore, when the centre of gravity is directly above

the point of suspension, the equilibrium is unstable : for on

the smallest departure from this line it will further descend

;

and will not rest, until it shall have attained the position

vertically beneath the point of suspension. In this latter

position, the equilibrium is stable; because on any departure

from this position, the centre of gravity will spontaneously

return to it.
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From these properties of the centre of gravity, this point

may be found mechanically.

The property first noticed was, that the body, if sus-

pended by the centre of gravity, will rest in any position

indifferently. The point possessed of this property may be

determined by trial.

The other property was, that if the body is suspended

from a point different from the centre of gravity, the body

shall not rest, until that centre attains to the vertical passing

through the point of suspension. Accordingly, if the body

is freely suspended from two points successively, and the

vertical passing through each point of suspension is traced

on the body, the intersection of these two lines shall mark

the place of the centre of gravity.

When the centre of gravity is in the vertical passing

through the point of suspension, the pressui'e or strain on

this point is plainly the weight of the body. And for any

position, the strain can be readily determined : for resolving

the weight of the body applied to the centre of gravity into

two forces : one acting in the line joining that centre with

the point of suspension, and the other perpendicular to the

same; the former is w.cos.a, and the latter w.sina; a

being the angle made by the line drawn to the point of sus-

pension and the vertical. The former of these is destroyed

by the resistance of the fixed point, and produces the pres-

sure thereon ; the latter is that part of the weight employed

in producing motion.

If the body is suspended from two points, it will not rest

until the centre of gravity is brought to the vertical ph\ne

which contains the two points of suspension ; and then the

pressures on the two fixed points are given by Sect V. Art. 5.

Wherein e being the angle between the vertical and the line

which joins the fixed points,

zrzw'.sin. £. x — w.cos.e.
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and Y being cypher, the expressions there given are reduced

to

w [sin. t{a — x) -{- cos, e. si] , w{sm. z. x — cos.z.z)

a
'

a
'

These are the pressures in lines perpendicular to that which

joins the fixed points. But with respect to the pressures in

the direction of that line, all that can be determined about

them, on the supposition of the perfect immobility of the

points of suspension, is, that the sum of those pressures is

w. COS. e.

If this line is horizontal, the angle e is right, and there-

fore,

sin. £zi 1. cos. £ = 0.

and the pressures altogether vertical; which reduces the

expressions for those pressures to

w{a — x) w.x

a ' a '

agreeably to what has been shewn, Sect. II. Art, 4. relative

to the resolution of a force into two parallel forces.

If the line which joins the points of suspension is vertical,

there will be

sin. 6^:0. cos. e z: 1. x zz w. 2 — 0.

whereby the expressions for the pressures in the perpen-

dicular to the line connecting the fixed points, are

w.z — w.z

a a

and all that can be known relative to the vertical pressures,

is, that their sum is w, or the weight of the body.

This is the case of a door hung on two hinges, wherein

a denotes the distance between the hinges ; and z the per-

pendicular on that line from the centre of gravity. So that

the upper hinge is drawn out, and the lower hinge pressed
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inwards, by a force w. - . the sum of the vertical pressures

being w.

For the weight acts in the vertical passing through the

centre of gravity, and may therefore be supposed to be ap-

plied to any point of this line. This being resolved in the

directions of the lines drawn to the hinges from the point so

assumed, each of the forces into which it is thus resolved, is

again to be resolved in directions vertical and horizontal.

The vertical forces will reproduce the weight, and the hori-

zontal forces the strains in their directions. Thus the points

of suspension being m and w ; and o the centre of gravity,

(Fig. 43.) let the lines no, mo, be drawn, and let the latter

be produced beyond the point o, as to c. Also, let ov be a

vertical line directed downwards from the point o. Ihe

weight which acts in the direction ov, is resolved into two

forces directed in the lines oc, on ; the former drawing the

upper hinge outwards ; and the latter pressing the lower

hinge inwards. These three forces are as the sides of the

triangle mon ; i. e. the weight being represented by the line

mn, parallel to its direction, the hinge at m shall be drawn

out by a force, regresented in magnitude and direction by

the line mo ; and the hinge at w, pressed inwards, by a force

represented in magnitude and direction by the line on. But

if each of these strains is to be resolved into two, one in the

vertical line mn, and the other in the perpendicular to this

line ; this is done by drawing the perpendicular od. The

strain mo is resolved into md, acting vertically downwards
;

and the strain do acting horizontally outwards : also, the

strain on into dn, acting vertically downwards ; and od acting

horizontally inwards. The sum of the vertical pressures is

mn, or the weight of the door ; and this may be sustained by

either of the points of suspension, or divided between them

in any ratio; but the point m is drawn horizontally outwards,

I
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with the force do ; and the point n is pressed horizontally

inwards, with an equal force.

The same things would readily follow from the principles

established in Sect. III. Art. 3. For the weight being trans-

ferred to the vertical containing the hinges, there is gene-

rated a pair of equal and contrary forces, whose moment is

w X od, which may be turned round in the same plane, so as

to become perpendicular to the line mn. But the moment

w X od is equal to — . iv X mn. i. e. to the moment of the

forces — .w acting at the interval mn.
mn

The body being placed on a horizontal plane, if the ver-

tical passing through the centre of gravity meets the plane

in a point within the base, the body shall rest, because the

weight applied to the plane at this point, may be distributed

on the angles of a triangle within which it is contained : and,

by the supposition, such a triangle can be made by joining

certain points of support. The weight being so distributed,

the pressures are necessarily equilibrated by the resistances

of the points to which they are applied. But the stability

of the body will depend on the excess of the shortest line

that can be drawn from the centre of gravity to the contour

of the base, above the perpendicular distance of the same

point from the plane. For in order to carry it over the edge

of the base, the centre of gravity must be raised to an eleva-

tion equal to this difference. Hence in general, the stability

of a body is greater, as the distance of the centre of gravity

from the plane of support is less, in relation to the extent

of the base.

When the base of the body is reduced to a point verti-

cally beneath the centre of gravity, the smallest force, ap-

plied in a different direction, should produce a disturbance.

Yet even in this case, the equilibrium may be stable, un-
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stable, or neutral. Thus, when an elhptic cylinder is placed

on a horizontal plane, with its lesser axis in the vertical, the

position is that of stable equilibrium. If the same body rests

on the extremity of its greater axis, the equihbrium is un-

stable. A cylinder with a circular base, placed with its side

on a horizontal plane, affords an example of neutral equi-

librium. The sum of the pressures made at the points of

contact, is the weight of the body.

If the body rests on two points of support, the vertical

passing through the centre of gravity must meet the line

connecting the two pohits of support at some intermediate

point ; and the pressure on each point is to the weight, as

the distance of the point of intersection from the alternate

point, to the distance between the two points of support.

If the body rests on three points, the vertical passing

through the centre ofgravity must meet the plane within the

triangle, formed by joining the three points of support ; and

then, if lines ai*e drawn to the three angles, from the point

vertically beneath the centre of gravity, the pressure on each

angular point is to the weiglit, as the area of the partial

triangle placed on the opposite side, to the area of the whole

triangle. Sect. V. Art. 7.

If the body touches the plane on which it rests in more

than three points, the pressures on the several points are

indeterminate, on the supposition of the perfect rigidity of

the body, and of the plane on which it rests ; and all that

can be then determined, with respect to those pressures, is,

that their sum is the weiglit of the body.

When the vertical line passing through the centre of

gravity falls without the base, the body must upset; because,

the reaction of the plane being in a vertical line different

from that in which the weight is directed, those forces

cannot equilibrate.

If the body is placed on an inclined plane, it must neces-

sarily descend; the surfaces being perfectly smooth, i.e.

1 2
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supposing no restraint arising from friction. For, if the

weight of the body, which is a force apphed at the centre of

gravity, is resolved into two forces, one of them perpen-

dicular, and the other parallel to the plane, the latter, not

being opposed to the reaction, must produce its full effect

in carrying the body down the plane.

If the perpendicular from the centre of gravity on the

plane, falls within the base or surface of contact, the body

shall descend by sliding. For if the weight of the body,

which is a force applied at its centre of gravity, is resolved

into two forces, of which one is parallel, and the other per-

pendicular to the plane : this last being directed to a point

within the base, shall be equilibrated by the resistances

:

and as the remaining force, viz. that parallel to the plane

passes through the centre of gravity, there will be no rota-

tory movement. See Art. 4.

From these considerations, it would appear that a sphere,

cylinder, or a regular polyhedron should descend down an

inclined plane by sliding, and not by rolling or tumbling

;

inasmuch as in these bodies, the perpendicular from the

centre of gravity on the plane, always falls within the base,

whatever be the inclination of the plane to the horizon. But

in this, the force of friction is not considered. The effect

of friction is to impede the motion of the parts of the body

in contact with the plane. Accordingly, even though the

perpendicular on the plane from the centre of gravity,

should fall within the base, the body shall roll or tumble,

whenever the force of friction becomes equal to that which

is required to turn the body over the edge of its base.

Hence, if the body is a sphere whose contact is reduced to

a single point, the least imaginable friction will impart rota-

tory motion: but a polyhedron will require more or less,

according to the extent of the base, measured from the foot

of the perpendicular from the centre of gravity on the plane,

and in the direction of the slope : and the same body that
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slides, when opposed by a certain force of friction, may

tumble if the friction is increased.

If the perpendicular on the inclined plane falls without

the base, the body shall always descend by rolling or tum-

bling. But this rotatory movement may be in any direction,

according to the position of the foot of the perpendicular,

with respect to the base of the body or surface of contact.

For the weight of the body resolved in a direction perpen-

dicular to the plane, and the reaction of the plane, being pa-

rallel and contrary forces, must necessarily produce a rota-

tory movement, whose direction shall be determined by the

position of the point, in which the plane is met by the per-

pendicular let fall on it from the centre of gravity.

It appears then, that a body placed on an inclined plane

may tumble backwards, i. e. up the slope, even though it

should lean forwards with respect to the vertical. This

may be exemphfied by a rod of inconsiderable thickness,

when i=ts direction is within the angle made between the

perpendicular to the plane, and the perpendicular to the

horizon.

6. The properties of the centre of gravity hitherto de-

scribed, relate to a body suspended from a fixed point, or in-

cumbent on a plane. There is another property of this cerr-

tre which deserves to be noticed. It is that expressed by

the following theorem :

" The content of a surface or solid of revolution is equal

to the product of the generating line or plane, by the path

described by its centre of gravity."

To prove this theorem relative to a surface of revolution,

let DE be the line by whose motion the surface is generated,

(Fig. 44,) and bc the axis of revolution: let s denote the

whole line ; ds any one of its elementary parts, and y its

ordinate, or the perpendicular distance from the axis cb :

also, let a denote the distance of its centre of gravity from
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the line bc, and w the angle described by the plane cbde
;

observing that w is an abstract number, viz. the quotient of

the arc by its radius : so that the expression for the arc

described by any point of the curve whose ordinate is y,

is (i)?/.

This notation being understood, it will be seen that the

conical surface described by any element, ds, is

(x).i/.ds.

and that the surface generated by the entire line, is

or, because w is the same for all the elements, it is

ojl{i/.ds).

But the sum of the products, had by multiplying each ele-

ment into its distance from the axis bc, is equal to the single

product of their sum, s, into the distance of its centre of gra-

vity from the axis, ?'. e.

^^'.ds — a,s.

wherefore,

ix)^?/.ds zz w.a.s.

which, putting s for the generated surface, is

s zz o).a.s.

i. e. the generated surface is equal to the product of the ge-

nerating line, into the arc or path described by its centre of

gravity.

To prove the proposition for a solid of revolution, let

CBDE be the generating plane, and cb, as before, the axis of

revolution. The plane being supposed to be resolved into

elementary rectangles, by ordinates perpendicular to the

axis CB ; and dx, denoting the portion of the axis between

any two consecutive ordinates, the expression for the ele-

mentary rectangle will be //.dx.

But the sum of the products had by multiplying each of
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these elementary rectangles, into the distance of its centre of

gravity from the axis, is equal to the single product of the

area of the entire plane, into the distance of its centre of gra-

vity from the same axis, i. e. putting a for the entire area

CBED, and g for the distance of its centre of gravity from the

axis CB, it will be

,2

SY ^^^ - ^•^^

Therefore,

The first member of this equation is the sum of the pro-

ducts of y.dx. into -~. or the sum of the products had by

multiplying each elementary rectangle into half the arc de-

scribed by the extremity of its ordinate, i, e. the sum of the

portions of the solid generated by the several rectangles :

and the second member is the area of the generating plane,

multiplied into the arc or path described by its centre of

gravity. Wherefore, putting v for the entire volume of the

generated solid, it will be

V ^ A.(D.g.

The whole of the surface or solid of revolution is ex-

pressed by replacing w in these formulae with 2 vr, the ab-

stract number, which denotes the ratio of the periphery of a

circle to its radius, i. e. the quotient of the former divided

by the latter. Making this substitution, the surface of re-

volution is expressed by the equation

s z: 2TT.a.s.

and the solid of revolution by the equation

V — 27r.g.A.

If the revolving line or plane lies on each side of the axis,

it is only the difference of the surfaces or sohds generated
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by the parts, at different sides of the axis, that is so ex-

pressed : which will immediately appear by considering, that

in the statement relative to the equality of the product of an

entire mass into the distance of its centre of gravity from a

plane, and the sum of the products had by multiplying each

of the partial masses into the distance of its centre of gravity

from the same plane, those distances, if at opposite sides of

the plane, are to be marked with opposite signs.

These equations give the magnitude of a surface or solid

of revolution, when that of the generating line or plane is

known, together with the distance of its centre of gravity

from the axis of revolution. This method of quadrature or

cubature is called the barocentric method. A few examples

of its application are subjoined.

Example 1.—Let it be proposed to find the surface of a

truncated cone, whose side is given, together with the radii

of the circular bases.

This surface may be generated by the motion of the side

of the cone round its axis : wherefore, putting r, / for the

radii of the circular terminations, we have

a zz
2

which value of a, being substituted in the general formula,

there is

S Z2 TT (r + *•

Showing that the surface of the truncated cone is equal to

the area of a circle, whose radius is a mean proportional be-

tween s and r -\- 1', i. e. between the side and the sum of the

radii of the circular bases.

Example 2.—Let it be proposed to find the content of

the solid, generated by the revolution of an isosceles triangle

round a line passing through its vertex, and parallel to its

base.

Let CBD be the triangle, and cm its altitude, (Fig. A5.)
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and putting h for this altitude, and h for the base bd, we

have

bh
1 _ 2

7A = — and ^ = - h.

Substituting for a and g these values in the general formula,

there is

y--Tr.h'^.b.
o

But TT.h^ is the area of the circle whose radius is k, or cm,

and TT.h'^.b is the solid content of the cylinder standing on

that base, and whose altitude is b, or bd. Wherefore, the

solid is I of that cylinder.

Example o.—Let it be proposed to find the solid content

of a ring.

This solid may be supposed to be generated by the move-

ment of the circular section of the ring, its centre describing

the periphery of another circle, to which its plane is every

where perpendicular. Therefore, if r denotes the radius of

the generating circle, and r that of the circle described by

its centre, the area of the generating plane will be

and the path described by its centre of gravity will be

Accordingly, for the volume, we shall have

V =: 2 TT^. r'^. r.

If the axis, round which the generating circle revolves,

is a tangent drawn to a point in its periphery, we shall have

r'^i: r.

and for the solid content,

Example 4.—To find the content of the solid, generated

by the revolution of a parabolic segment, round its chord.
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Let the chord of the segment be perpendicular to the

axis, and putting b for this chord, and h for the abscissa, the

area of the generating plane is

^b.h.

Moreover, the distance of the centre of gravity from the ver-

tex was found to be

^ h5 ""

and, therefore, the distance of the same from the axis of re-

volution, is

Wherefore, the path described by the centre of gravity, is

f.7^./^.

giving for the volume

or putting for h, its value, viz. 2 V {jp-^- it is

If the chord is oblique to the diameter to which it is ap-

plied, putting a for the angle of inclination, the area of the

generating plane is

§ b.h. sin. a.

and the path described by the centre of gravity is

J. TT . /^ . sin. a.

whereby the equation becomes

V = -1 f . TT .p^ . ]i^ . sin^ a.

The same general formulae may be applied to find the

centre of gravity of the generating line or plane when the

content of the generated surface or solid is known. Thus,

__ s _ v
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Example 5.—The solid content of a sphere is

and this solid is generated by the revolution of a semicircle

round the diameter, by which it is terminated, whose area

is

~¥'

Wherefore, substituting these values of v and a in the last

equation, we have for the centre of gravity of the semi-

circle,

TT

The same as already found by the direct method.

In finding the distance of the centre of gravity of a line

or surface from any assumed axis or plane, each element

was multiplied into its distance from that axis or plane, and

the sum of the products, thus obtained, was divided by the

whole content of the figure : and in finding the content of

the surface or solid generated by the revolution of that

figure, the distance of the centre of gravity was multiplied

into 2 TT, and into the content of the generating line or sur-

face. It is evident then, that this division and subsequent

multiplication, by the content of the generating figure, may

be omitted ; and that when the investigation is to be con-

ducted by the aid of the integral calculus, it will be enough

to take the sum of the products of each element into its

distance from the axis, and multiply that integral by 2 tt.
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SECTION VII.

OF THE MECHANIC POWERS.

1. The use of mechanic instruments, as far as they are

concerned in statics, is to enable us, by a force at our dis-

posal, to counteract another force, to which it is not op-

posed in direction, and to economize the force employed for

this purpose. The latter force is called the power, and the

former the resistance ; or simply the weight, when the re-

sistance is a weight to be equilibrated: and it is evident,

that the equilibrium shall be established, whenever the re-

sultant of the power and resistance is directed against some

fixed point, or immoveable obstacle : but then the equili-

brium is not, properly speaking, between those forces, but

between them, or their resultant, and the reaction of the

fixed point or obstacle.

Such being the way in which the equilibrium is estab-

lished by means of mechanic instruments, it is apparent

that there may be the greatest disparity between the anta-

gonist forces : and it is said that there is a mechanical ad-

vantage or disadvantage in the instrument, according as the

resistance is greater or less than the power by which it is

counteracted.

The more simple elements, into which machines are

resolvable, are called mechanic powers. These may be

classed according to their different structures and modes of

application : but the classification is in a great measure ar-

bitrary ; the precise difference which constitutes a distinc-

tion of class not being generally agreed on. Accordingly,

by some writers, they have been distributed under six, by
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some under seven, and by others, under eiglit classes or

heads. What renders the distribution of the mechanic

powers still more uncertain is, that being only different

means of effecting the composition or resolution of forces,

the operation, in all, is reducible to the same principle. By
each of them we are enabled to compound with the force to

be counteracted, a new force called the power; so that the

resultant of both shall be directed against the obstacle.

The differences, then, of mechanic instruments, relate not

to the principle of their operation, but to their structures

and modes of application ; and those who wish to treat the

subject in the most simple manner, will be inclined to refer

to the same class, such instruments as have an obvious re-

semblance in these respects. According to this rule, they

may be classed under three heads, viz. the lever, the rope,

the inclined plane. The first head comprising the balance,

and the axle in the wheel ; and the third head the wedge

and the screw.

THE LEVER.

2. The lever is a bar capable of angular motion round a

point called the fulcrum. To this, two forces are applied :

that which is to be counteracted is named the resistance

;

and the force by which it is to be equihbrated, the power.

The rectilinear distances of the points of application from

the fulcrum are called the arms of the lever. Thus in

(Fig. 46.) F is the fulcrum, round which the lever ab is at

liberty to turn ; p the power ; and w the resistance or weight

to be supported ; and the right lines, fa, fb, drawn from

the fulcrum to the points at which these forces are applied,

the arms of the lever.

It is evident that the weight of the instrument itself is a

force, which, if it does not pass on the obstacle, must come

in aid of one or other of the forces to be opposed to each
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Other. But to deduce the consequences of certain condi-

tions, these conditions must be contemplated apart, even

from those with which they may be inseparably connected.

Wherefore, in considering the relation between the forces,

which are to equilibrate on a bar, with respect to angular

motion, the bar is regarded as a line without flexibility or

weight ; and the centre of angular motion as a fixed point.

When the weight of the instrument is to be taken into ac-

count, it is to be treated as a force applied at its centre of

gravity in a vertical direction ; and as making part of the

power or resistance, according as it conspires with one or

other of those forces.

3. For equilibrium, it is requisite and it is sufficient, that

the power and resistance should have a single resultant di-

rected through the fulcrum or fixed point. And this condi-

tion is equivalent to the three following: 1st. That the di-

rections of power and resistance should be in the same plane

which contains the fulcrum ; for if the power and resistance

did not act in the same plane, they could not have a single

resultant ; and if this plane did not contain the fulcrum, the

resultant, which is always in the plane of the components,

could not pass through this point. 2d. That the power and

resistance should tend to turn the lever round the fulcrum in

opposite directions ; for if the directions of the forces meet

at an angle, that of the resultant must lie within the same

;

i. e. the fulcrum must lie within this angle. And if the lines

of direction are parallel, that of the resultant, and therefore

also the fulcrum must lie between them or beyond them, ac-

cording as the component forces are directed to the same or

opposite sides of a line transverse to their directions.

3d. That the power and resistance should be reciprocally

proportional to the perpendiculars let fall from the fulcrum

on their lines of direction : for the components are recipro-

cally proportional to the perpendiculars let fall from any

point taken in the line of the resultant, and the fulcrum is in
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that line. Thus p, p' representing the power and resistance,

and^, // the perpendiculars from the fulcrum on their direc-

tions, this condition requires the following relation :

p :
^' wp \p. or, Yp — p//.

This relation may be otherwise expressed ; for I, V being the

lengths of the arms, and 0, 0' the angles which they make

with the directions of the forces, there is ^ = /. sin. 0, ^/= V.

sin.0'. whence

p . /. sin. == p'. V . sin. 0'.

The product of a force into the perpendicular from the

fulcrum on its direction, is called the moment of that force

;

and the three conditions of equilibrium may be briefly ex-

pressed, by saying, that " the moments of the forces should

be equal and opposite."

If the fulcrum is not a point in the lever itself, but only a

point of the surface of a body on which it may rest, it will be

requisite to add to the conditions of equilibrium as stated

above, that the resultant of the forces should be directed to

the fixed point, in a line perpendicular to the surface at the

contact.

4. Regarding the power as a force to be economized, it

is usual to divide the lever into three kinds, according to the

position of the fulcrum with respect to the power and re-

sistance.

The first kind of lever is that in which the fulcrum lies

between the power and the resistance or weight, as in

(Fig. 47.)

The second is that in which the resistance or weight is

applied between the power and fulcrum, as in (Fig. 48.)

And the third is that in which the power is applied be-

tween the resistance and fulcrum, as in (Fig. 49.)

In the first kind of lever, there is a mechanical advantage

or disadvantage, according as the perpendicular from the

fulcrum on the direction of the power is greater or less than

that on the direction of the resistance or weight.
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If the lever is straight, and the directions of the forces

parallel, the perpendiculars from the fulcrum on the direc-

tions of the forces are proportional to the lengths of the

arms. Therefore, in this case, the power acts at a me-

chanical advantage or disadvantage, according as it is ap-

plied to the longer or shorter arm of the lever.

In the other two kinds, the arms are always unequal;

and, therefore, the lever being supposed to be straight, and

the forces parallel in direction, there will be always a me-

chanical advantage in the second kind of lever, and a me-

chanical disadvantage in the third.

5. Hitherto two forces, only, were supposed to be applied

to the lever ; and in that case, it was required that they

should act in the same plane ; otherwise, they could not be

compounded into a single resultant. And it was further

required, that the plane of the forces shovdd pass through

the fulcrum ; otherwise, their resultant could not pass

through the fixed point. These things were contained in

the general statement that the moments should be directly

opposed. But when there are more than two forces ap-

plied to the lever, it is no longer requisite that the directions

of the forces should be contained in the same plane : but

then, it is required that the sum of the moments of those

forces should be cypher, in each of the three coordinate

planes passing through the fulcrum, i. e. that the three con-

ditions of equilibrium should be satisfied as stated in Sect.

V. Art. 2. relative to a system containing a fixed point.

If the fulcrum is a cylindrical axle, which allows the

lever no liberty of movement, but in a plane perpendicular

to that axle, the equilibrium is provided for, when the sum

of the moments of the forces, reduced to that plane, is cypher:

and if the lever only rests on a fixed point, the equilibrium

is established, only when the forces are reducible to a single

resultant directed against that point.

6. It is sometimes requisite to consider the strain on the
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fulcrum, with a view to the safety of the instrument, or in

estimating the effects of friction; and it is readily under-

stood, that when the fulcrum is a fixed point, the strain on

this point is the resultant of the forces applied to the arms

of the lever. This resultant passes through the fulcrum,

which may therefore be taken for its point of application,

where it will reproduce its components. Accordingly, the

strain on the fulcrum may be regarded as the resultant of

the forces acting immediately at this point, in lines parallel

to their proper directions. The magnitude of this resultant,

or the charge on the fixed point, will depend not only on the

magnitudes of the forces applied to the arms of the lever,

but also on the angle contained between their lines of direc-

tion; the greater limit being the sum of those forces, which

is the strain, when they are applied in parallel directions to

a lever of the first kind : and the lesser limit being the dif-

ference of those forces, which is the strain, when they are

applied in parallel directions to a lever of the second or third

species.

7. All those mechanical instruments are to be regarded as

levers, wherein the motion that ensues on a violation of equi-

librium is circular. Thus, a hammer, when used for the

purpose of drawing a nail, is a lever of the first kind ; the

power being applied at the end of the handle, the resistance

at the claw where it grips the nail, and the fulcrum being

the heel round which the instrument turns. Crow-bars,

also, are levers of this kind, when the power and resistance

move in opposite directions: as when the power, apphed at

one end, descends ; whilst the weight, at the other end,

ascends. But when both together ascend, or together de-

scend, the weight is then between the fulcrum and the point

of application of the power ; and the instrument is, in this

use of it, a lever of the second kind.

An oar of a boat is another example of the second kind of

K
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lever : the fulcrum being in the water, the resistance at the

row-lock, and the power applied by the hand of the rower.

A ladder to be raised against a wall, whilst one end re-

mains on the ground, affords an example of the third kind

of lever : the fulcrum being the end on the ground, round

which it turns ; the weight that of the ladder acting at the

centre of gravity, and in a vertical direction ; the power
being applied by the hands of the labourer at some interme-

diate point. It is evident that the labourer applies his force

with most advantage in the perpendicular to the ladder;

and that the nearer the ladder approaches to the vertical po-

sition, the less is the perpendicular from the fulcrum on the

direction of the weight ; and, therefore, the less the force

required to overcome it.

The limbs of animals, which are moved by muscular

power, are also levers of the third kind : the fulcrum being

at the head of the bone ; and the muscles acting between

this point and the centre of gravity of the limb, where the

weight of its parts may be supposed to be concentred.

This mode of action might seem to require a needless ex-

penditure of animal force. But it is to be considered, how

much is gained by this contrivance, in the lightness of the

limb and the celerity of its movements : and whether these

advantages are not wisely secured by an expenditure of

force, which the enormous power of the muscles, in con-

tracting, may so well afford.

A pole with a weight, carried by two men, may be viewed

as a lever of the first kind, if the weight be regarded as the

resistance of the fulcrum, and the bearers as acting against

each other : or it may be viewed as a lever of the second

kind, the force exerted by either of the bearers being re-

garded as the reaction of the fulcrum, and that exerted by

the other as the power by which the weight is supported.

Whilst the forces exerted are vertical, the sum is only equal

to the weight to be carried, and the portions of this sup-
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ported by the two men, are reciprocally proportional to their

distances from its centre of gravity. But if the forces ex-

erted by the bearers are not vertical, their directions must

meet at some point of the vertical passing through the

centre of gravity of the load ; and as in the parallelogram of

forces, the sum of the two contiguous sides is greater than

the diagonal; so the sum of the forces exerted must exceed

the weight to be supported : and they are to each other reci-

procally as the perpendiculars, let fall from the centre of

gravity of the load upon their lines of direction. Whilst the

pole is horizontal, each of the bearers would suffer from this

mode of exertion. For, let the pole be ab, (Fig. 50. ) ; let

the weight w be applied at the point o ; and let p, p' be the

forces exerted by the bearers at a and b, in directions meet-

ing the vertical passing through o, at the point c ; and let Bd

be perpendicular to ac. Then,

BO

Bd

But w and bo, being constant quantities, the force p would

vary inversely as Bd; i. e. inversely as the sine of the angle

CAB. And in the same way it appears, that the force p' va-

ries inversely as the sine of the angle cba. But when the

pole is not horizontal, as when it is carried up or down a

hill, the lowermost bearer must act, partly, by pushing or

shoving ; and the uppermost by pulling or drawing : and

this mode of exertion being inconvenient to the latter, he

will naturally be disposed to relieve himself at the expense

of his fellow. To see to what extent he may diminish his

burden, let ab be the pole in its inclined position, (Fig. 51.)

and let Bd, Be be perpendicular to ca, co. Then,

Be

Bd

in which Be, depending on the slope, is to be considered as a

constant quantity. Wherefore, p shall vary inversely as Bd,
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and shall, therefore, be least when this perpendicular is

greatest, i. e. when bc? coincides with ba ; or when ac is per-

pendicular to ab. The force then exerted at a will be given

by the equation

Be
p = w X —

.

AB

which is less than would be required in the horizontal posi-

tion of the pole, m the ratio of Be to bo ; i. e. in the ratio of

the cosine of the angle of elevation to radius. The addi-

tional exertion required of the lowermost bearer will be

greater than that from which the uppermost thus relieves

himself; inasmuch as, in this case, the sum of the forces ex-

ceeds the weight to be supported,

8. Sevei'al levers may be combined together ; and then

the action of any one of them on the next that follows, is the

power by which the latter is worked. Thus, abcd (Fig. 52.)

represents a combination of three levers of the first kind

;

f', f", f'", being the fulcra. The manner in which the action

is conveyed from one extremity to the other, is as follows

:

A, the extremity of the first lever, being depressed by the

power, the other end of that lever is raised ; and together

with it b, the end of the second lever, which presses on it.

This elevation of the nearer end of the second lever produces

a depression of its remoter end ; and, therefore, of c, the

nearer end of the third lever, by which its remoter end, d,

is raised.

The mechanical advantage of this combination is readily

understood. The power applied at a is to the force which

it equilibrates at b, as f'b to f'a. The force at b is to that

which it equilibrates at c, as f"c to f"b. And the force at c

is to that which it equilibrates at d, as f'"d to f"'c. Where-
fore, the power applied at a is to the weight which it will

sustain at d, as f'b Xf"c Xf"'d, to f'a Xf"b Xf"'c ; i. e. as the

product of the several powers to that of the several weights.
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which they would balance in the levers taken separately.

Thus, if

f'a :f'b::3:2. f"b : f"c : : 7 : 3. f"'c : f'"d : : 5 : 2.

Then,

f'b Xf"c Xf'"d : f'a xf"b Xf"'c ::^x3x2:3x7x5.

or as 4 to 35. So that a force equivalent to a weight of four

pounds at a, shall sustain a weight of thirty-five pounds at d.

And if the power at a were made greater than this, the

weight at d would be lifted.

Such are the conditions of equilibrium in the lever, and

such, in general, is the manner in which this instrument is

applied. But there are certain instruments of this class,

which, from some peculiarity in their uses or structure, would

demand a more particular consideration.

9. The balance is a lever, applied to ascertain the weight

of a body.

There are five different ways in which the equilibrium

may be established : and these furnish so many different in-

dications of the weight of the body under examination.

1st, By adjusting the weight of the counterpoise acting at a

given distance from the fulcrum or axle. 2d, By changing

its distance from the fulcrum. Sd, By changing that of the

body to be weighed from the same point. 4th, By shifting

the fulcrum. The fifth indication is the inclination of the

beam when it composes itself.

Of these several indications, the first is most generally re-

sorted to ; recommended, no doubt, by its more extensive

application ; as also, by its superior accuracy. For this rea-

son, the adjustments to be attended to in a balance con-

structed on this principle, shall be more particularly con-

sidered.
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THE BALANCE FOR EQUAL WEIGHTS.

10. In this balance the body whose weight is to be as-

certained and its counterpoise are placed in dishes, or other-

wise suspended from the extremities of the beam, and are

therefore to be regarded as acting immediately at the points

of suspension ; and the fulcrum on which the beam turns is

situated between those points : the instrument is evidently a

lever of the first kind, whose arms are the right lines drawn

from the fulcrum to the points of suspension. Now, as the

equilibrium is to be established between equal weights, it is

plainly requisite that the anns should be of equal lengths

;

and at first view this may appear sufficient. But as this kind

of balance is frequently employed in cases where the most

scrupulous accuracy is desired, it is necessary to consider

more particularly the properties which are required, and the

adjustments to be attended to.

For the indication of the equality of the appended weights,

it is necessary that the beam should compose itself in some

certain position ; and the horizontal position is obviously the

most convenient. Wherefore, the property first required in

this balance is, that it should rest in none but the horizontal

position when loaded with any equal weights, and therefore

also when unloaded. The second is, that it should quickly

right itself when disturbed from that position : this is called its

stability. The third property required is that it should in-

dicate a small difference of weights by its deviation from the

horizontal position. This is called its sensibility. It now

remains to be shown how these perfections are to be at-

tained.

11. The balance cannot have the first of these properties

unless the common centre of gravity of the beam and equal

weights lies beneath the axle ; for were it at this point, the

balance would rest indifferently in any position ; and were it
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above the axle, the smallest deviation from the vertical pass-

ing through this point would cause the balance to upset.

It is necessary then that the common centre of gravity of

the beam and equal weights should lie beneath the axle ; but

this is not enough. In order that the equality of the weights

should be indicated by a certain position of the beam, it is

necessary that the right line drawn from the fulcrum to the

centre of gravity of the unloaded beam should bisect the hne

connecting the points of suspension. To show this, let aob

be the balance, (Fig. 53.) o its fulcrum, b the point at which

the line ab is bisected. This point is the centre of gravity

of the equal weights, where they may be supposed to be

concentred. Let c be the centre of gravity of the unloaded

beam, then the common centre of gravity of the beam and

equal weights shall be in some point of the line be, as at x,

dividing the line be into segments xb, ccc, which are reci-

procally proportional to the masses concentred at b and c,

and therefore changing its place in the line cb with every

change in the magnitude of the load. Hence it appears,

that if the line be does not pass through the fulcrum o, the

line ox shall make different angles with the line ab ; and

since the line ox is necessarily vertical when the balance is

at rest, it follows that the position of ab shall change with

every change in the magnitude of the load.

It is plain that when the line be passes through o, the

position of equilibrium for equal weights is independent of

their magnitude.

But it is not sufficient that the equality of the weights

should be indicated by the same unvaried position of the

beam, that position must be horizontal, and the former con-

dition being satisfied, this last is provided for by making the

arms of equal lengths. For in the last figure the line ob

being vertical when the balance is at rest, if ab is horizontal

the angles at b are equal, and therefore the lines oa, ob are

also equal: and conversely, if these lines are equal, the
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angles at b must be equal, i. e. right, and therefore the line

AB horizontal.

If the arms are of unequal lengths, the lines oh, hh.

(Fig. 54.) being respectively equal to oh. b6 as before, and

oA, OB being unequal, the angles at h are unequal, and oh

being vertical, ab shall be no longer horizontal, but in-

clined.

This suggests a ready mode of trying whether the condi-

tion relative to the lengths of the arms is fulfilled. For it is

requisite only to interchange the equilibrating weights ; and

if the equilibrium still subsists, the arms are precisely of

equal lengths. Were it otherwise, the weight which had

acted by the shorter arm, being the greater weight, now

that it acts by the longer arm, must necessarily prepon-

derate.

A balance which does not stand this test, though it may

rest in the horizontal position when unloaded, is a deceitful

balance: and the commodity to be dealt out, if placed at the

end of the longer arm, is deficient in weight ; bearing to that

of the counterpoise, the ratio of the shorter to the longer

distance. If placed in the dish at the end of the shorter

arm, and again counterpoised, the weight of the new coun-

terpoise shall bear to that of the commodity the same ratio,

as the latter to that of the first counterpoise : wherefore,

the true weight is a geometrical mean between those by

which it is counterpoised, when weighed in the opposite

scales, and may be ascertained accordingly. Thus, putting

p for the weight of the commodity ; I for the longer line bc
;

and /' for the shorter ac; and when p is appended by the

longer arm, let a be its counterpoise : we shall then have

p./=: A./'.

Again, when appended by the shorter arm, let b be its coun-

terpoise, and the equation will be

p.r=B./.
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To exterminate /, /', let these equations be multiplied, and

we get

F^ zz A.B. or p = -v/ (a . b).

A still more easy way of using such a balance would be,

after counterpoising the body, to take it out of the scale,

and restore the equilibrium by a weight. For those weights

are necessarily equal, M^iich equilibrate with the same coun-

terpoise in the same circumstances.

In order that the lengths of the arms should remain un-

varied, in all positions of the beam, it is requisite that the

bodies, weighed against each other, should not be applied

to the arms in any considerable part of their surface ; other-

wise the vertical, passing through the centre of gravity of

the body, shall meet the arm in a point whose distance from

the axle is variable with the inclination of the beam ; and the

effective length of the arm shall be changed accordingly.

To render the points of apphcation invariable, the ends of

the arms are formed into rings, and bent over at right

angles. Into these are inserted the hooks, which are to

carry the dishes or weights; and the bearings being reduced

to knife edges, the points of suspension are invariably the

same.

12. Another of the perfections, which were said to be

required in a balance, is stability. This relates to the cele-

rity with which it rights itself, when disturbed from the

horizontal position ; and, therefore, it depends on the force

of restitution, which may be thus estimated.

Let AB be the line connecting the points of suspension

;

(Fig. 65.) w the weight of tlie unloaded balance ; p one of

the equal weights
; g the common centre of gravity of the

whole ; and o the axle. Then, putting a for og, and

for the angular deviation of og from the vertical, or of ab

from the horizontal position, the force of restitution will

be
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(2 p -f- w) a. sin. Q.

i. e. if is of given magnitude, the force of restitution will

be as

(2 p 4- w) «•

13. The third of the perfections required in a balance

is its sensibility ; which is estimated by the difference of the

weights required to produce a given inclination of the beam

in relation to their sum; the sensibility being the greater,

as this difference is less, in relation to the entire load.

In order to see on what this property depends, let iv be

the additional weight thrown into the scale appended from

A, (Fig. 55.) The effect of this will be, to remove the

common centre of gravity of the balance and weights from

g towards a, as to g\ The balance will now compose itself,

so that og' shall be vertical ; and the deviation of the beam

from the horizontal position is measured by the angle g'og.

Now, for the relation between this angle and the quan-

2 p-l-w
tity ^^^— , there is in the bent lever Aog, the weight w,

at A, in equilibrio with 2 P + w, at ^. Wherefore, putting

L for oA, there will be

w . L . sin. ang. Aog'— {2t -\-w) a. sin. 0.

But when ab passes through the axle, the angle Aog is right,

and Aog' is the complement of 0, which gives

„ W.I.
tan. t/ ZZ rr: ; r .

(2 p + w) a

Though the line ab should not pass through the axle,

yet the angle oab is always exceedingly small ; and, therefore,

Aog nearly a right angle. So that the error will not be, in

any case, considerable, if Aog' is treated as the complement

of 0. Accordingly, the preceding equation will serve gene-

rally for the straight beam. If then, is of given magnitude,
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O p _L. -yy L ,

, shall vary as -: which shews that the sensibiUty is

greater, as the length of the arm is increased, and as the

distance of the common centre of gravity from the axle is

diminished.

14. If the centre of gravity of the unloaded beam is in

the line connecting the points of suspension, and at its middle

point, as required Art. 11. the length of the line a, shall be

independent of the magnitude of the appended weights ; and

-, which is the measure of the sensibility, will not be affected

by any change of load.

But if the line connecting the points of suspension does

not pass through the centre of gravity of the balance itself;

it is evident, that as the magnitude of the appended weights

is increased or diminished, the common centre of gravity of

beam and weights shall approach this line or recede from

it accordingly : and that a being consequently a variable

quantity, the sensibility and stability of the balance shall

vary with the load in a manner easily understood.

Thus, if the line connecting the points of suspension falls

below the centre of gravity of the unloaded balance, the

sensibility shall be diminished, and the stability increased,

as the weights are increased. And if the same line falls

above the centre of gravity of the unloaded beam, between

it and the axle, the effect will be the contrary. And finally,

if the same line falls above the axle, the balance will serve

only for weights below a certain limit. This limit of 2 p de-

pends on w, the weight of the balance, and on the distances

of the axle from the centre of gravity of the unloaded balance,

and from the line connecting the points of suspension. For

let o be the axle
; g the centre of gravity of the unloaded ba-

lance ; and let the line^o meet the line ab above the point o,

as ate, (Fig. 56.) This point c is the centre of gravity of 2p,
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and it is evident that as this weight is increased in relation to

w, the common centre of gravity of the whole shall ascend

from g towards c; and that when it arrives at o, the balance

becomes useless. In that case we have

2 P X o<? = w X o^.

and therefore,

o Off

oc

At this limit the balance shall rest indifferently in any po-

sition. And if the weights are further increased, the com-

mon centre of gravity shall be raised above the axle ; and

the balance, on receiving the smallest inclination, shall

upset. If the point g lies above, and the point c below the

axle, the balance will serve only for weights above a certain

limit. This limit being expressed as before.

The qualities of stability and sensibility are not to be

combined together : and if the balance is improved in one

respect, it must be injured in the other ; as will more fully

appear from the theory of pendulums. Therefore, nice

balances are often provided with an adjusting strew ; by

which the distance of the common centre of gravity from the

axle may be varied at pleasure, according to the degree of

sensibility required, by the uses to which the balance is to

be applied.

Various contrivances have been adopted for lessening the

weight of the beam without prejudice to its strength or stiff-

ness. In ordinary cases, this is supposed to be sufficiently

provided for by the shape and material of the beam. This

is made of steel. Its thickness is far less than its depth
;

and this latter decreases from the axle to the extremities.

The sensibility of the balance is also affected by the friction

between the axle and its supports. This is diminished, by

attending to the material and polish of those parts, and by

the form of the axle, which is that of a knife edge.
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THE STEEL YARD.

15. The balance already examined is, perhaps of all, the

most accurate. Other constructions are, however, frequently

employed, recommended by their simplicity; but chiefly by

the promptitude of their indications, which is often of more

value than extreme precision.

The steel yard is a beam with arms very unequal in

length. The commodity to be weighed is suspended by a

hook at the end of the shorter arm, and is counterpoised by

a sliding weight, hung by a steel edge on the longer arm.

This arm is graduated ; and the weight of the commodity is

indicated by the division at which the counterpoise is

placed, when the equilibrium is established. This, as well

as the balance before described, is a lever of the first kind :

and it is evident, that if at the first division, the counter-

poise is in equilibrio with a certain weight, appended at the

shorter arm ; it shall balance twice that weight, when re-

moved to the second ; thrice when removed to the third

division, and so forth. If, for example, the length of the

shorter arm is two inches, and the counterpoise a weight of

two pounds ; then, when placed at the distance of two

inches from the axle, it shall balance a weight of two pounds,

hanging from the shorter arm ; at the distance of four

inches, one of four pounds ; and at six inches, one of six

pounds ; every inch of the scale, in this case, correspond-

ing to a pound weight. These divisions may be conveni-

ently subdivided into parts of the eighth of an inch ; and

then the same balance will shew a difference of two ounces.

16. It is not requisite that the beam should compose

itself in the horizontal position when unloaded, and it is

therefore commonly made to hang vertically, as the most

convenient position, But in that case, the zero of the scale
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is not at the axle : for the moment of the beam conspires

with that of the commodity or of the counterpoise, accord-

ing as it is the shorter or the longer arm of the unloaded

balance that preponderates : and for equilibrium, the equa-

tion will not be between the moments of the commodity and

counterpoise ; but between the moment of one of these, and

that of the other increased by the moment of the beam.

Therefore, it cannot be said that the weights of the commo-

dity and counterpoise are inversely as their distances from

the axle, i. e. the zero of the scale is not at this point.

To find the point from which the divisions should com-

mence, let p be the weight of the commodity
; ^j that of the

counterpoise ; and h the point where it is to be placed to

render the beam horizontal, when otherwise unloaded.

(Fig. 57.) It is plain that p X uo is the moment of the

beam. Therefore, when the equilibrium is established in

the loaded beam, the weight p being at a, and the counter-

poise at K, the equation is

P X AO ZZp X HO -\-p X KO =zp X HK,

Accordingly, the zero of the scale is at h ; and if from this

point, the portions hb, bc, cd, &c. are measured off, each

equal to ao, we shall have

p z:zp, p = 2p, P =. Sp, &c.

as the counterpoise is placed at b, c, d, &c.

17. There are two limitations to the use of this balance,

viz. the shortness of its range, and the coarseness of its in-

dications.

When the counterpoise is carried to the end of the scale,

it is in equilibrio with a weight greater, only, in the ratio of

the longer to the shorter arm : so that if the lengths are as

ten to one, and the counterpoise a weight of two pounds,

the balance shall weigh only to twenty pounds.

This imperfection may be remedied, in part, by chang-

ing the counterpoise, according to the magnitude of the
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weight to be examined. In this way, the value of each di-

vision is changed with that of the counterpoise.

Another method is that of furnishing the shorter arm

with a second hook. If this hangs at half the distance of

the former, the shorter arm is reduced to one-half its former

length, and the value of each of the divisions on the longer

arm is doubled.

With respect to the second limitation, it is to be ob-

served, that the accuracy of weighing consists in the small-

ness of the difference of weights, which the balance will

indicate, in relation to the load it carries. If the smallest

divisions indicate ounces ; then, unity divided by the num-

ber of ounces in the weight of the body examined, shall

denote the degree of accuracy to which the weight is ascer-

tained. This is the same fraction, as the smallest division

of the scale, divided by the distance at which the counter-

poise is placed to equilibrate the body weighed. So that if

the counterpoise stands at fifty inches, and the smallest di-

visions are -^q inch, the nicest indication will be the j^^ of

the weight. This is far short of the nicety of the common

balance last described. A well-made balance of that con-

struction would shew a difference of the millionth part of

the entire weight. So much more accurate are the ordinary

methods of weighing than of measuring.

The want of a minuter division of the scale may be

partly supplied by a second and smaller sliding weight. If,

for example, the lighter be the y^^ of the heavier ; then, the

motion of the lighter through one division, produces the

same change of momentum, as would the motion of the hea-

vier, through Jq of a division : and this simple contrivance

answers the same purpose as a division of the scale ten

times as minute. In using the two counterpoises, the hea-

vier should be placed at the division nearest to equilibrium,

and the defect is shewn by the division to which the smaller

is applied, to render the equilibrium perfect. Thus, if the
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divisions with the greater counterpoise denote ounces, and

the weight of the body is found by it to be greater than

101b, 6oz. but less than 101b. 7oz. ; then, if the lighter be

y\j of the heavier, and that the equilibrium is made perfect

by advancing it to the third division, the weight of the body

under examination is 101b. 6.3oz.

In making a comparison of this with the ordinary ba-

lance, it should be observed that the load on the fulcrum

exceeds the weight of the body under examination only by

the weight of the counterpoise ; which is, ordinarily, much

less than it : whereas, the common balance is loaded with

twice the weight of the commodity. This is a trifling ad-

vantage, and it is far more than counterbalanced by the

disadvantages already mentioned. However, in cases where

expedition is more desirable than extreme precision, this

instrument is highly valuable.

THE BENT LEVER BALANCE.

18. The balance which gives the readiest indications is

the bent lever balance ; such as the corn balance, or the

yarn balance, represented in (Fig. 58.) We have only to

place the matter to be weighed in its scale ; the balance

produces its own equilibrium, and this most speedily, be-

cause of its great stability : the index, without any further

trouble, declares the weight.

To ascertain the principles on which it should be gradu-

ated, let the balance be that represented in (Fig. 58. No. 1.)

the arm which carries the scale being at right angles with

the index, and this index being vertical before the weight is

introduced ; and, therefore, passing through the common
centre of gravity of the balance with its scale and given

counterpoise. Then, if a weight is placed in the scale, the

common centre of gravity of the instrument and weight shall

take the position vertically beneath the axle ; the index as-



THE BENT LEVER BALANCE. 145

cending through a certain arc 6 ; and co.9 will become

the angle, made between the arm which carries the scale

and the vertical. Let / be the length of this arm ; a the

distance of the centre of gravity of the instrument from the

axle ; p the weight of the commodity in the scale ; and p
that of the instrument. Then, we shall have .,._

JO -a <\%r5uU^
F.l.cos.u :zzp.a.sin.U. '-

and therefore,

p. a. ta.n.9'=—1—

But ^-^ is a given quantity ; wherefore, p varies as

tan.9, i.e. as the tangent of the angle through which the

index has moved. If, then, by placing in the scale a weight

of one pound, the index is moved through a certain angle

;

by a weight of two pounds, it shall be moved through an

angle whose tangent is twice ; and by a weight of three

pounds, through one whose tangent is thrice as great ; and

so forth. Accordingly, to graduate the arc, beginning at

the point where the index rests when the balance is un-

loaded, it is only requisite to find the arc through which

the index is carried by a known weight ; and putting unity

for its tangent, to measure the other arcs from the same

point to the several points of division, such, that their tan-

gents shall be represented by the numbers 2, o, 4, &c.

Thus, let OA (Fig. 59.) be the arm to which the weight is to

be appended ; this being supposed to be horizontal when

unloaded, and the index in the vertical ov. Then a known

weight, e. g. of one pound being appended, let the arm

take the position oa, and the index that of oa. In the tan-

gent vs, taking ab, be, cd, Sec. each equal to va, the lines

ao, bo, CO, do, &c. drawn to the centre shall mark the divi-

sions on the arch.

In this explanation it was supposed that the arm which

L
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carries the dish was horizontal, and the index vertical, when

the instrument was unloaded, i. e. that it passed through

the centre of gravity of the unloaded instrument. These

conditions are not necessary. The arm and the index may
have any positions. It is enough that the zero of the scale

should be at the point marked by the index when the balance

is unloaded : for, being fixed to the bent lever, it shall par-

take of its angular motion ; and, therefore, describe the same

angle as its centre of gravity. Accordingly, the index itself

is commonly made to serve for the counterpoise : but if it is

desired that the weights in the scale shovdd be as the tan-

gents of the arches described, it will be requisite that the

arm which carries the dish, should be at right angles to the

line drawn from the axle to the centre of gravity of the in-

strument, i. e. that the arm should be horizontal when the

scale is empty.

A quadrantal arc would give an infinite range ; the tan-

gent of a right angle being infinite. But as the arches,

whose tangents are equidifFerent, increase by differences

which rapidly diminish, and as the weight which the instru-

ment would carry is limited ; it is evident, that a graduated

arc, much less than a quadrant, will serve for all practical

purposes.

THE WEIGHING MACHINE.

19. The machine, the best that has been hitherto con-

trived for weighing heavy burdens, is that called the weigh-

ing machine. The scale is a platform, on which the cart or

dray is driven; and the load, though of many hundreds

weight, is balanced by a few pounds.

The equilibrium between weights so very unequal, is

produced by means of a compound lever, as shewn in

(Fig. 60.) where akb is a lever, having two fulcra at a and

B. Die is another lever precisely similar, having its two
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fulcra at d and c. At e, f, g, h, are upright pins, on

which the platform rests ; and by these the load on the plat-

form is made to press on the levers aeb, dec. These, then,

are levers of the second order : and the pins being equidis-

tant from the fulcra, the weight sustained by any one of

them, as by the former at e, is to the pressure produced by

it at K in the ratio of ak, to ae. The pressure thus re-

duced is communicated to a lever, ml of the second order,

whose fulcrum is at l, and would be counteracted by a force

at M, less in the ratio of lk to lm. So that if ae zz — , and

LM
LK = —7 , a hundred weight on the platform would be coun-

o

terpoised by a weight of two pounds acting at m. To dimi-

nish, yet further, the weight requisite for equilibrium, the

point M is connected with the shorter arm of a balance,

whereby the counterpoise is lessened in the ratio of the

shorter to the longer arm. This balance may be a steel

yard ; and then the load is indicated by the division to

which the sliding weight is brought, in order to produce

equilibrium. Or else, the longer arm may be furnished

with a dish appended to its extreme point ; and then the

load is ascertained by the weight in the dish. If the longer

arm is only four times that of the shorter, it is evident that

in the example given above, every hundred weight on the

platform would be counterpoised by a weight of half a

pound.

THE DANISH BALANCE.

20. The most portable balance, as well as the most

simple in its structure, is that in which the equilibrium is

established by the movement of the fulcrum: such is the

balance ab, (Fig. 61.) called the Danish balance. This is

simply a rod with a knob at one end to serve as a counter-

L 2
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poise, and a hook at the other end to carry the commodity

to be weighed. The equiUbrium is established by shifting

the place of the loop, by which the whole is sustained ; and

the weight is indicated by the mark at which the loop is

then placed.

The principle of the gi'aduation is easily understood.

The weight of the rod, including the fixed counterpoise a,

may be supposed to be applied at c, the common centre

of gravity ; and before the load is appended, the instru-

ment would be supported horizontally by the loop at this

point. But if a weight is hung from the hook, the equili-

brium is established by shifting the loop to the common

centre of gravity of the weight and balance, i. e. to a dis-

tance from c towards b, depending on the magnitude of the

appended weight. Therefore, the part of the rod between

its centre of gravity, and the end which carries the weight,

is to be graduated, so that the divisions, reckoning from the

former point, shall correspond to weights increasing by

some common difference. These divisions are of unequal

magnitudes ; but they are readily calculated.

For let p denote the weight of the instrument, including

the hook and fixed counterpoise ; p the appended weight

;

and let e be the point to which the loop is to be shifted for

equilibrium. Then putting a, for cb ; x, for ce ; we have

x\a — X \\ P :^>. and a; : « : : P : p '\-p.

Wherefore,

p
X ——;— . a.

p-fi?

Which, as a and^ are known quantities, gives the value of

X for every assumed value of p. Thus, if p were eight

ounces, and it were required to weigh to one ounce : there

would be, for the first division, or the distance of the first

mark from c,

1 a
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For the second mark,

149

For the third.

For the fourth,

and so forth.

2 a

3 3

4 a

THE AXLE IN THE WHEEL.

21. The lever is evidently an instrument of great power

in overcoming a resistance ; or even in communicating mo^

tion to large masses. But it would seem that the space

through which they could be moved by it must be small

;

and it might be supposed that its usefulness would be limited

by this condition.

There are, however, various methods of converting the

reciprocating motion of the lever, into one that shall be

rotatory or progressive.

The most simple contrivance for applying the principle

of the lever to the production of progressive motion, is that

of the axle in the wheel. This is an instrument consisting

of a wheel fixed on a cylinder, which turns along with it.

The moving power is made to act at the circumference of

the wheel by a strap or cord ; by coggs or teeth ; or some

other equivalent contrivance : and the weight is, in like

manner, applied at the surface of the cylinder or axle.

The axle in the wheel is therefore a lever of the first

kind ; the arm by which the power acts being the radius of

the wheel, and that to which the weight is applied, being the

radius of the axle. Moreover, as the forces act in the di-



150 STATICS.—SECT. VII.

rection of the tangents to the wheel and axle, their direc-

tions are perpendicular to the arms of the lever : wherefore

putting R,r, for the radii, p for the power, and w for the

weight, there is for equilibrium pr — wr. or — = -.

But the axle in the wheel is a broken lever : the radii

of the wheel and cylinder, which are the arms, being con-

nected by the intervening portion of the axis, which meets

them at right angles. And it may be supposed that the

legitimacy of this application of the theory of the straight

lever, to one thus distinguished from it, would require to

be demonstrated. This may be done in several ways, of

which the following is, perhaps, as simple as can be de-

sired.

Let the force p, acting in the direction mn, be transferred

to c, the centre of the wheel, (Fig. 62.) by applying at this

point two forces, each equal to p, acting in the opposite di-

rections, CE, CF, parallel to mn. This, which produces no

change in the system, gives a force + p, pressing on the axis

of the cylinder at c ; and a pair of forces + p, — p, acting in

the directions mn, of, whose moment is p.r. The force,

which is the weight w, being treated in the same way, gives

a force + w pressing on the axis at c, and a pair whose mo-

ment is w.r. The pressures on the axis, which is a fixed

line, are necessarily equilibrated by its resistance : where-

fore, the only condition required for equilibrium is, that the

resultant of the moments should be cypher. And as the

planes of the moments are parallel, this condition requires

that their sum should be cypher, (Sect. III. Art. 2.) i. e.

p r
P.R — W.r :^ 0. or — := - as before,w R

In this statement no account has been taken of the thick-

ness of the rope. If, for greater accuracy, this is to be con-

sidered, the forces may be supposed to be applied at its

axis ; and then, to the radius of the wheel or cylinder is to
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be added half the thickness of the rope hy which it is enve-

loped. Thus, let the thickness of the rope which passes

round the wheel be 2t; and that which passes round the

cylinder 2
1'

; then for equilibrium the equation will be

w ~ K-\-t'

22. With respect to the pressure on each of the points

of support, it is to be observed, that this can arise only from

the force equilibrated by the resistance of the axis, i. e. from

the forces p and w transferred to this line ; and from the

weight of the engine itself, acting at its centre of gravity,

which is in the same line. The pressure made by each of

these forces is to be estimated as for a system secured by two

fixed points: i. e. each force is to be resolved into two pa-

rallel forces, acting at those points. The total pressure on

each point of support is then found, by compounding the

forces exerted at that point. Thus, putting a for s*, the dis-

tance between the points of support ; m for cs ; the pressures

produced by p, at s and s, will be

a — m m
p. . p.—

.

a a

In the same manner, putting ti for os, the distance of the

weight from the same point of support, the pressures made
by w, at s and s, shall be

a—

w

n
w. . w. -.

a a

Finally, let w denote the weight of the instrument itself; d

the distance of its centre of gravity from s ; the pressures

made by this force at the same points, will be

a—d d
w. . w. -.

a a

Wherefore, the total pressure at s is the resultant of the

„ a—m ,w{a— n)-\-iv(a—d) ^ ,., ,, „
iorces, p.

, and —^ ^^
, of which, the former
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acts in a direction parallel to p, and the latter in the vertical.

Ill

And the pressure at s is the resultant of the forces p. —

,

a

and , acting m du'ections respectively parallel to

the former.

If the direction of the force p is vertically downwards,

the pressure at s will be

a

and that at s, will be

F.ni + w.« 4- IV.

d

a

The power, instead of being applied at the circumference

of a wheel, is frequently applied to a lever inserted in the

cylinder, as in the case of the windlass or capstan of a ship

;

and then the moment of the power is the product of this

force, into the radius of the circle described by the point to

which it is applied. When the resistance is to be overcome

by manual force, this is most commonly applied to a winch

handle, which is a lever consisting of three parts, whereof

two are parallel; and these are joined by another part at

right angles. One of the parallel divisions is a prolongation

of the axis of the cylinder, and to the other the hand is ap-

plied. The leverage of the power is to be estimated by the

length of the intermediate division. This is exhibited by

CDEF, (Fig. 63.) The part ef, to which the hand is applied,

is usually cased in a hollow cylinder which turns on it ; and by

this contrivance the friction is transferred from the hand to

the interior surface of the hollow cylinder.

23. If several weights are applied to the axle, the equi-

librium is established, when the product of the power into

the radius of the wheel is equal to the sum of the products,

had by multiplying each of the weights into half the thick-
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ness of the axle, taken at the point where it acts. If, how-

ever, any of the weights acts in the same direction as the

power, with respect to rotatory motion, its moment must be

added to that of the power, or subducted from those of the

remaining weights. Thus, if the weights are w, w', w", act-

ing by the radii r, r, r" \ and if w" tends to turn the instru-

ment in the same direction as the power, w, w' tending to

turn it in the opposite direction, the equation for equilibrium

will be

p.R + w". r"-=. w.r + w'. r.

or,

p.R — W.r + w . r —w .r .

In this way the labour is diminished, when the work to be

performed consists of two opposite motions. Thus, in draw-

ing up ore out of mine-shafts, two buckets are attached to

the same axle or cylinder : the ropes, by which they hang,

being wound in opposite directions. As the loaded bucket

ascends, the empty one descends ; whereby its moment is

added to that of the power, or subducted from that of the

resistance to be overcome.

Even when the work to be performed is of one kind only,

the same principle has been applied to diminish the labour.

To understand the value of the contrivance by which this is

effected, it is to be observed, that the efficacy of the instru-

ment is increased by enlarging the diameter of the wheel, or

by diminishing that of the axle : that the former of these me-

thods is limited by the size, which the engine cannot con-

veniently exceed ; and the latter, by the necessity of leaving

sufficient strength in the parts ; and also, by the waste of

power occasioned by the rigidity of the rope, when the cur-

vature which it is to receive is too quick, i. e. when the axle

round which it is to be coiled is too slender. But without

incurring either of these inconveniences, the power of the

instrument is increased by the following contrivance. The
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axle consists of two parts, of different thickness; and the

rope, which carries the weight, is attached by its ends to

these parts, being wound round them in opposite directions
;

so that whilst it coils on one of them, it winds off the other;

and the weight is suspended by a ring or pvdly from the rope

where it hangs double. Each part of the rope is then

strained by half the weight ; and the moment of this strain is

had by multiplying it into the radius of the axle to which

that part of the rope is applied. The moment ef the weight

is therefore the difference of these moments, or ^ w (r—r'),

and the equation for equihbrium is

(>— /)F.R— W —--.

2

This is evidently the same thing as if the axle were re-

duced to a radius equal to half the difference of the radii of

the parts, whilst the strength in those parts is that due to r

and r. Thus, if the radius of the winch handle is supposed

to be 20 inches ; and the radii of the axle in its two parts,

5 and 6 inches ; the power of the instrument, estimated by

the ratio of the equilibrating forces, is,

w— = 40.
p

So that an exertion of muscular strength, equal to half a

hundred weight, would be put in equilibrio with a weight of

one ton. To propose obtaining the same mechanical advan-

tage, by reducing the diameter of a single axle or cylinder,

its diameter should not exceed one inch, and a rope, suffi-

cient to carry a ton, could never be coiled round such a

cylinder.

24. But the usual method of increasing the mechanical

effect in instruments of this kind, is by combining two or

more of them in the same engine. One wheel may be made

to drive another, by a band or strap passing round the axle

of the driving wheel, and round the circumference of that
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to be driven by it. But the method practised where much

force is employed, is by furnishing the wheels to be driven

with cogs or teeth ; and the axle by which the motion is to

be communicated, with a smaller wheel, similarly indented.

The smaller wheels are called pinions ; and their teeth,

leaves : and as any one leaf of the pinion parts from a tooth

of the wheel it drives, the next leaf of the pinion comes into

contact with the next tooth of the wheel. Accordingly, the

intervals between the teeth that so w^ork together, must be

equal ; and the number of those in the pinion must be to

the number in the wheel it drives, as their circumferences,

i. e. as their radii. This combination is represented in

(Fig. 64.)

To estimate the advantage to be gained by such a com-

bination, let r, p', p".
. . . p„ be the forces applied at the several

wheels ; w, iv, w". . . .Wn , the weights which they would equi-

librate at their respective pinions : then the radii of the

wheels and pinions, being denoted by r, r', r". . . . r„, and

r, r , r\ .... r„. There are the following equations,

p _ r p' _ r' v" _ r' p„ _r„

tV K IV R W R R,,

Multiplying these equations together, and remarking that,

in the combination, the force at the first pinion is that ap-

plied to the second wheel ; the force at the second pinion is

that applied to the third wheel, &;c., or ivz^ p', w'zr: p'^, ....

M'«_i = Pn . there is

p r. r'.r', . . . r„

li\ R . R . R . . . . R„

or, since the force acting at the last pinion is the weight,

it is

p r . r. r". ...?•„

w R . R . R . . . . R„

This theorem may be expressed by means of the revo-

lutions performed in a given time. For the teeth which
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work in each other, being necessarily set at equal distances,

the radius of a pinion is to that of the wheel it drives, as the

number of teeth in the former to that of the teeth in the

latter, i. e. as the number of revolutions performed by the

wheel to that performed in the same time by the pinion.

Thus, if the pinion has six leaves, and the wheel driven by

it sixty teeth ; the pinion must perform ten revolutions,

whilst the wheel makes only one. And universally, the

number of revolutions performed in a given time by the

pinion and the wheel it drives, are inversely as the number

of their teeth, i. e. inversely as their radii. Wherefore put-

ting V, v', v" , &c. for the number of revolutions performed

by the first, second, third wheel, &;c. in the same time, we

shall have

Z-— — — — iL A !!^— Jil.
R' V ' r" v'' R„ Vn-\

Making these substitutions in equation (a), it becomes

w Rv

shewing that for equilibrium, the ratio of the power to the

weight is had, by multiplying the radius of the last axle and

that of the first wheel, each by the number of revolutions

performed by it in a given time. So that if r = 10. r„. and

V rr 40. v„. we should have

w = 400. p.

and a man working such an engine with a force equal to ^^

pounds, would sustain a weight of ten tons.

25. The teeth of the pinions and wheels afford the

means not only of communicating motion from one to the

other, but also of changing the direction of that motion ; as

may be seen by figures 65 and 66. In the former of which,

the pinion drives a crown wheel in a plane perpendicular to

its own plane ; and in the latter, the same thing is done by

bevelled work.
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In the construction of bevelled work, the particulars

chiefly to be attended to, are the inclination of the axes, and

the tapering form of the teeth. The angle contained by the

axes is equal to that which measures the change to be made

in the direction of the motion ; as may be seen by (Fig, 67.),

where the pinion n drives the wheel m. The angle formed

by the axes is bad : and the four-sided figure badc being

right angled at b and d, the angle bad is equal to ecb,

which measures the change of direction.

The manner in which the teeth should taper in bevelled

work, will be understood by conceiving two cones to roll on

each other, whilst turning round their respective axes.

These cones are exhibited in (Fig. 68.) Whilst the sur-

faces are smooth, the motion cannot be communicated from

one to the other, without considerable pressure ; and this

would be attended with a violent strain on the axle. To

prevent this inconvenience, and consequent waste of force,

the surfaces are fluted as in (Fig. 69.) and it is evident, that

the flutings should converge to the common vertex. More-

over, as the more dehcate parts of the flutings, near the

angles of the cones, are of httle use, those parts may be dis-

pensed with ; and then, nothing will remain but the bevelled

wheels befc, cfgd.

THE PULLY.

26. If a cord is used simply as the means of acting at a

distance from the point to which the force is to be applied,

the service it performs is often of considerable value ; but

as the cord, by its tension, acts with equal energy in oppo-

site directions, it is plain that in this use of it, the power

to be applied must be equal and opposite to the resistance

to be encountered ; and, therefore, that no change is made

either in its quantity or direction. It is otherwise, when

one of those forces being applied to strain the cord in the
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direction of its length, the other is applied transversely,

to inflect it. Let the cord acb (Fig. TO.) be drawn by two

forces, T, t', acting at its extreme points a and b ; and let it

be inflected by the force f, acting at any intermediate point,

c, in the direction ce. Then, if any line, dc, in the direc-

tion of F, is taken to represent this force, and if this is made
the diagonal of a parallelogram hk, whose sides are in the

directions of the lines ca, cb, the forces acting in those direc-

tions shall be represented by en, ck or hd, and there will be

the proportions expressed by the following equations :

F T T
or.

CD CH HD* ' sin. {6 + B') sin. 0' sin. B

'

6, 0' being the angles made by the directions of the forces

T and t', with that of f.

If A and B are fixed points, to which the cord is at-

tached by its extremities, the reactions of these points will

take the places of the forces t and t'; and the same analogy

will express the relation of the inflecting force f, to the

strains on those points. And in either case, the forces

T and t' are the tensions of the two parts of the cord ca,

CB.

27. But if the inflecting force f, instead of acting at the

same invariable point of the cord, is at liberty to change

its point of application ; as when it is applied to a running

knot, or to a ring, through which the cord is passed, then

the two parts of the string communicating freely, their ten-

sions must be equal, i. e. T — t', and therefore, zz 9'.

Making these substitutions in the former theorem, there is

F : T : : sin. 2 6 : sin. 6::2 cos 6:1. or

F n St. cos 6.

If = 90". or ACB is one right line, there shall be

COS. = 0, and therefore f, infinitely less than t, for equi-

librium. Hence it appears, that if an inextensible cord lies

in a right line between its extreme points, a transverse force,
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however small, shall overcome any force, however great, by

which it is strained longitudinally : and, therefore, that by

the most inconsiderable transverse force, there may be pro-

duced on the fastenings, a strain which is only limited by

the strength of the cord itself. But if the cord suffers ex-

tension, cos. 9. is different from cypher, and therefore, f bears

some assignable ratio to t. As the angle at c diminishes,

COS. 0. increases ; and therefore the ratio of f to t increases.

When that angle becomes 120°, or 9 2= 60°, 2 cos. 9=1, and

.*. F— T. and when the angle at c vanishes, i. e. when the

two parts of the cord are parallel, cos. 0—1, and .'. f — 2 t.

Wherefore, if one end of a cord is fixed, and a weight

or resistance is applied at the other end, and the power

transversely at some intermediate point, there will be a me-

chanical advantage, so long as the angle contained by the

two parts of the cord exceeds 1 20° ; and this advantage will

be greater, as the angle is increased ; being infinite, for an

angle of 180°, i. e. when the two parts of the cord lie in

directum. But if the angle made by the two parts of the

cord is less than 120°, the mechanical advantage is to be

gained by applying the power as a tending, and the resis-

tance as an inflecting force. And as the angle farther di-

minishes, the ratio of the power to the resistance diminishes,

becoming that of 1 : 2 when the angle vanishes, i. e. when

the two parts of the cord are parallel.

28. The loss of force which would be occasioned by the

rigidity of the rope, if bent at a sharp angle, is avoided by

passing it over or under a grooved wheel. And to lessen

the friction, the wheel is made to turn on an axle ; or the

axle on the points of support. Thus, the friction is trans-

ferred from the rope and circumference of the wheel to the

axle, where its leverage is so much less.

Such is the pully, consisting of a grooved wheel or sheave,

turning on an axle fixed in a block. The rope passing over

or under the sheave, two of the three equihbrating forces
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are applied at its extremities ; and the third at the block

which carries the sheave.

The use of this instrument is merely to lessen the effects

of rigidity and friction ; so that if these were not to be con-

sidered, the rope might be supposed to pass round a pin, or

through a ring. Wherefore, the theorem stating the rela-

tion between the power and resistance already delivered,

may be immediately applied to this instrument. The power

always acts at one extremity of the rope ; and as the resistance

or weight may be applied either to the other extremity of

the rope, or to the block in which the sheave revolves, the

instrument is divided into two kinds, applicable to different

purposes. These two kinds are called the. fixed and the

moveable pully.

29. The fixed pully is represented by (Fig. 71.) where

ABD is the wheel or sheave turning on an axle at c, and in

the block ce. The rope is mabn ; to one end of which is

applied the power p, and to the other, the resistance w.

The block is attached to a point, either absolutely fixed, or

to be so considered.

From Art. 26. it appears, that for equilibrium, p must be

equal to w ; and, therefore, that no mechanical advantage is

gained. The only use of the fixed pully is, to change the

direction of the power ; the force p, acting in the direction

AM, being thereby made to equilibrate the force w, acting in

the line bn. The change made in the direction of the force

is measured by the angle gem. And if the two parts of the

rope, AM, BN, were parallel, a power acting vertically down-

wards would draw a weight vertically upwards, i. e. the

change of direction would be measured by an angle of 180°.

29. If the resistance or weight is applied to the block, as

in (Fig. 72.) the pully ascends or descends with the weight it

supports ; and is, therefore, called the moveable pully : and

for equilibrium, we have
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This relation between p and w may be expressed by

means of the circle adb. For if radii are drawn to the

points A and b, where the rope parts from the sheave; the

lines CA, cb, ab, are perpendicular to the lines am, bn, cf, the

dii'ections of the three equilibrating forces: and, therefore,

the triangle cab is similar to a triangle, whose three sides

are in those directions : wherefore,

p: w: : ca: ab.

i. e. the power shall be to the resistance, as the radius of the

wheel to the chord of the arch embraced by the rope ; so

that putting c for this chord, and r for the radius of the

sheave, it will be

p : w : : r : c.

If the two parts of the rope are parallel, we shall have

c zz 2r.

and therefore,

w

Accordingly, the moveable pully is used with most advantage

when the parts of the rope are parallel : the energy of the

power being then doubled at the working point.

SO. By combining the fixed and moveable pullies, the

twofold advantage is gained, of reducing the power by which

the weight is to be equilibrated ; and of changing the direc-

tion in which it is to be exerted. This is represented in

(Fig. 73.) where the rope, attached to a fixed point, is

passed under a moveable pully, and then over a fixed pully.

The power, applied to the end which hangs from the fixed

pully, shall sustain a weight of twice its magnitude applied

at the block which contains the moveable pully. And if the

first end of the rope, instead of being secured by a fixed

point, is passed over a second fixed pully, and then attached

to the block which carries the weight, as in (Fig. 74.) the

M
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power shall sustain a weight of thrice its magnitude. For

the rope being at perfect hberty to move over cr under the

pulhesj must be equally strained in every part. One ofthose

strains is measured by the power, and if the ropes are verti-

cal, the remainder by the weight.

31. Several moveable pullies may be combined in the

same block, and as many fixed pullies in another block. In

these combinations there is one rope which passes alternately

over the fixed, and under the moveable pullies. The power

is applied to one end of this rope, whilst the other end is

fixed ; or else, attached to either block. Such are the com-

binations represented in (Figures 75 and 76.)

The power is to the weight as unity to the number of

strains by which the weight is supported : and this number

is, in one case, twice the number of moveable pullies ; and

in the other case, greater by unity. Wherefore putting n

for the number of moveable pullies, it will be

p : w : : 1 : 2 ??. or p : w : : 1 : 2 w + 1

.

according as the end of the rope is attached to a fixed point,

or to the block which carries the weight.

32. Single pullies or systems of pullies, such as have

been described, may become the constituent parts of other

systems ; and hence arises considerable variety. Thus, to

a system, such as that described in the last article, a move-

able pully may be added, having a distinct rope, one end

of which is attached to the block containing the system of

moveable pullies. The other end may be attached to a fixed

point, as in (Fig. 77.) Or it may be carried over another

fixed pully, and then connected with the block of the pully

which it carries, as in (Fig. 78.) The weight is appended

from the block of this moveable pully; and it shall be twice

as great in the one case, and in the other thrice as great,

as the power would sustain, without this addition to the

system. For the appended weight it equal to the sum of

the strains of the parts of the last rope ; and that sustained
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by the block above it, is equivalent only to one of those

strains.

If to each moveable pully there is a distinct rope, one

end of which is attached to the block of the next superior

pully, and the other end to a fixed point, the block of the

lowest pully carrying the weight, as in (Fig. 79.) ; the strain

on each succeeding rope, beginning with that to which the

power is applied, is twice as great as the strain of the pre-

ceding rope, and the weight is equivalent to twice the strain

of the last rope. Wherefore, n denoting the number of

moveable pullies, the relation between the power and weight

shall be

p : w 1 : 1 : 2".

If the end of each of these ropes, instead of being at-

tached to a fixed point, is carried over a fixed pully, and

then attached to the block which it carries, as in (Fig. 81.)

the ratio of the power and weight will be given by the

analogy.

p : w : : 1 : 3«.

The energy is yet greater, in either of these systems

when inverted : the ends of the ropes, or the pullies which

before were fixed, being now attached to the weight, as in

(Figures 81 and 82.) Thus, in (Fig. 81.) the strain of the

rope attached to the weight at b, is p ; that of the rope at

c, is 2 p ;
that of the rope at d, is 4 p ; and that of the rope

E, is 8 p. Wherefore, the weight w, being equal to the sum

of these strains, is p, multiplied into the sum of the terms

of a geometrical series whose first term is unity, and whose

ratio is 2, the number of terms being one more than the

number of moveable pullies. Consequently the equilibrating

n + l

weight is expressed by the equation w — (2 — 1) p. In the

arrangement represented in (Fig. 82.) the strain at b is 2 p;

that at c is 2. 3 p ; that at d, is 2. 3. 3 p ; and that at e is

2. 3. 3. 3 p. Wherefore, the weight is p, multiplied by the

M 2
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sum of a geometrical series whose first term is 2, and whose

ratio is 3 ; the number of terms being, as before, one more

than the number of falhng pullies. Accordingly, the equi-

re+l

librating weight is expressed by the equation w r= (3 — 1)p.

3S. These several arrangements may be variously com-

bined ; and from what has been delivered, the weight which

the power will carry in each, is easily computed. This may

be exemplified in the combinations known by the name of

the Spanish Burtons, represented in (Fig. 83.) In the first

of these, a rope, fixed at one end, passes under a moveable

pully which carries the weight ; then over another pully

;

and to this rope the power is applied. But the second

pully, instead of being fixed, is carried by a distinct rope,

which, passing over a fixed pully, is attached by its other

end to the lower block. Here the strain of the second rope

is double of that to which the power is applied, or 2 p: and

this strain is applied in supporting the weight. Moreover,

the rope to which the power is applied, being doubled about

the lower pully, exerts the same force of 2 ? in sustaining

the weight. Wherefore,

w rz 4 p.

In the second Burton, a rope applied at one end to the

weight, passes over a fixed pully. The other end carries a

moveable pully having a distinct rope, which, being applied

to it at one end, passes under a second moveable pully,

which is attached to the weight, then over the former, and

the power is applied to the end of this rope. The strain of

the former rope is evidently thrice that of the latter, or 3 P

;

and the second carries a portion of the weight equal to 2 p.

Wherefore,

^v — 5p.

34. In this account of the pully, it has been supposed

that the several ropes are strained, in directions parallel to

that of the weight or resistance which they support. If any
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part of a rope encompassing a moveable pvilly, is inclined to

the direction of the rope it carries, the energy with which it

acts against the resistance is to be estimated, by multiplying

its strain into the cosine of that angle of inclination. For by

resolving the oblique strain into two, one of them parallel,

and the other perpendicular to the direction of the strain

on the pully, the former is the energy with which it acts in

sustaining that pully ; and this is the strain of the rope,

multiplied into the cosine of the angle of inclination. The

latter is the strain multiplied into the sine of the same angle
;

and this is counteracted by the opposite strain of the other

part of the same rope.

If one end of the rope that carries the pully is fixed, the

strain on the pully is supported by two strains of the rope,

and these are inclined at equal angles. In this case it was

shewn, that the strain of the rope was to that supported by

the pully, as the radius of the sheave to the chord of the

arch embraced by the rope. Art. 29. This affords a ready

method of computing the ratio of the power and weight, in

a system, consisting entirely of such pullies. Thus, in a

system of fixed and moveable pullies, with a single cord fixed

at one end, putting r, r, r", 8cc. for the radii of the move-

able pullies, and c, c, c" , &c. for the chords of the arches

embraced by the ropes, we shall have for any obliquity of

the directions,

p _ r, r . r" . &c.

w ~ c.c . c". &c.

'

S5. When the power and weight act in the same direc-

tion, it is evident that the pressure on the fixed point is

equal to \v -f- p ; and if the power acts in the direction op-

posite to that of the weight, that this pressure is w — p. If

there are several such fixed points, this strain is distributed

among them, as in the system represented in (Fig. 79.) where

the points b, c, d, e sustain the several pressures, p, 2 p, 4 p,

8 P, and the point a the pressure 2 p.
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THE INCLINED PLANE.

36. If a material point is urged obliquely against a plane,

it may be maintained in a state of rest, by the application of

another force
;
provided that the resultant of the two forces

is directed perpendicularly against the plane. For such a

resultant would be completely counteracted by the resistance

or reaction of the plane. Thus, let the plane be cd, (Fig.

84.) against which, a material point at o, is virged by the

oblique force fo ; and let o// be perpendicular to the plane,

at the side opposite to that on which is placed the material

point: the equilibrium shall be established by any force,

which, compounded with fo, gives a resultant in the direc-

tion of Of/.

To find the force or forces which will satisfy this con-

dition, it is to be observed, that the direction of the sustain-

ing force must be in the plane in which are fo, oy. Where-

fore, if the line ab be the intersection of this plane with the

given plane cd, it may be taken for this latter plane. If

then FE be drawn perpendicular to ab, i. e. parallel to oy,

the only condition is, that one of the components being re-

presented in quantity and direction by Fo, the direction of

the resultant must be parallel to fe, and it is plain that this

condition will be satisfied by a force represented in quantity

and direction by a line drawn from the point o, to any point

such as M, in the perpendicular fe, produced indefinitely

beyond the line ab.

Hence it appears, that the sustaining force, when di-

rectly opposed to FO, is equal to this force : that it is least,

when directed in the plane itself, being then represented

by OE : that at equal angles above and below the plane,

the sustaining forces are equal ; and that no force, of what-

ever magnitude, acting in the direction oy, perpendicular
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to the plane, would suffice to sustain the material point

against it.

The force fo, is resolvable into the forces fe perpen-

dicular to the plane, and eo in that plane ; and in like man-

ner, the force om into the forces em and oe. Of these, the

forces EO, oe, being equal and opposite, destroy each other,

and FE, EM, being in the same line coalesce into one force

FM, which is the pressure on the plane. This pressure is the

sum or difference of the forces fe, em.

To express these results algebraically, let p designate

the force fo, and s the sustaining force om, then the sides

of the triangle fom, being as the sines of the opposite angles,

the forces p, s, are reciprocally proportional to the sines

made by their directions with the perpendicular to the plane,

i. e. to the cosines of the angles made by those lines with

the plane. Wherefore, a, a, denoting those angles, there

p. COS. a. z=. s. cos. a'. (1)

which is the condition of equilibrium.

Also, denoting the resultant or pressure on the plane by

R, there is

R. COS. a =. p. sin. (a + «')• (^)

The force p remaining unaltered in magnitude or direc-

tion, it appears from equation (1), that s. cos. a is constant,

or that the sustaining force raises inversely as the cosine of

the angle, which its direction makes with the plane. It is

therefore least when cos. a — 1 . or a — o. The sustaining

force is, therefore, most economised when directed in the

plane itself, its magnitude being then s z= p. cos. a.

37. Such, in general, is the theory relative to a material

point supported against a plane. But there is a particular

case which deserves to be considered distinctly. It is, that

wherein the plane is inclined to the horizon, and the force

Avith which the point is urged is its weight : such is denomi-

nated the inclined plane.
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The whole theory of the indined plane flows at once

from what has been thus generally established : for in this

case, the force p is the weight of the body whose direction

is vertical ; and therefore, the angle formed by it with the

plane, is the complement of that made by the plane with the

horizon. Denoting this latter angle, or the elevation of the

plane by £ ; and the weight of the body by w, there will be

p = w. a z: 90 — £. Also, patting 7 for the angle made by

the direction of the sustaining force and plane, there will be

cos. a z=: sin.f . cos. a' = cos. 7. sin. (o + a) = sin. (90° — £+ 7)

= cos. (7 — e). Wherefore, substituting these values in (1)

and {2), there will be

sin.E COS. (7 — f)
s = w . R = w. ~——^.

COS.

7

COS.

7

giving the values of the sustaining force and pressure.

When the sustaining force acts in the direction of the

plane, there is 7 = o. and therefore,

s = w. sin.E. R =: w. cos.e.

Or putting /, h, b for the length, height, and base of the

plane, there shall be

7t b
S = W. -y. R = W.

-J.

When the direction of the sustaining force is parallel to

the base of the plane, or 7 = e. there shall be

s = w. tan.E. R =
COS.E

or,

h I
S = W. -. R = W.V

b b

On account of the importance of this subject it may not

be amiss to establish this theory by a separate investigation.

Let AC be the inchned plane (Fig. 85.), bc its height, and

AB its base. Then if from the right angle b, the line bo is
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let fall perpendicular to the plane, and from the point c, the

line cm is drawn parallel to the direction of the sustaining

force, meeting the line bo at m, the three sides of the ti'i-

angle CBin, being parallel to the directions of the three

forces, shall be proportional to them in magnitude. Where-

fore s, R, w denoting, as before, the sustaining force, the

pressure and the weight, there shall be

s : w : : 77ic : cb.

R : w : : B7n : cb.

When the sustaining force is parallel to the plane, ?nc coin-

cides with oc.

But

and

Therefore,

oc : CB : : cb : CA : : /i : /.

OB : cb : : BA : ca. b : I.

h b
W. -. R = W.

J.

mc : CB :
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sin.c cos.^
. *. S= W, . R = W. .

COS.y COS.y

which results agree with those ah'eady given.

oS. If instead of a material point, it is a body of any

definite magnitude, whose weight is to be supported on the

inclined plane, certain other conditions are to be satisfied

respecting the position of the body, and the direction of the

force to be applied.

With respect to the position of the body, it is to be ob-

served, that its weight and the reaction of the plane are to

be equilibrated by the sustaining force. But the forces of

resistance being directed in lines perpendicular to the in-

clined plane at the points of contact, the direction of their

resultant is perpendicular to that plane, at some point ofthe

surface of the polygon, formed by connecting the points of

contact. Wherefore, if the plane passing through the cen-

tre of gravity of the body, perpendicular to the inclined and

horizontal planes, i. e. perpendicular to the intersection of

those planes, does not pass through the surface of contact,

the forces to be equilibrated are not in the same plane ; they

have then no single resultant, (Sect. III. Art. 3.) and conse-

quently, they cannot be equilibrated by a single force.

Wherefore, to render the body capable of being sustained

by the application of a single force, the plane passing through

its centre of gravity, and perpendicular to the intersection of

the inclined and horizontal planes, must pass through the

surface of contact.

Such is the condition relative to the position of the body.

If this condition is not satisfied, it will be requisite to apply

two forces, which must be such, that the resultant of the

weight and two sustaining forces shall be directed towards

the plane, in a perpendicular at some point of the surface of

contact.

The condition relative to the position of the body, being

fulfilled, the body may be sustained by the application of a

single force directed in the plane passing through the centre
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of gravity, and perpendicular to the intersection of the in-

clined and horizontal planes. But the force applied for this

purpose is restricted by a condition relative to its point of

application.

To see tlie nature of this restriction, let cd be the in-

clined plane, (Fig. 86.) ;
gv the vertical line passing through

the centre of gravity ; abc the surface of contact, intersected

by the plane of the forces in the line ab. Then, if from a

and b, the extremities of this line, perpendiculars are raised

to the plane cd, they shall meet the vertical gv, as at d and e.

And as the perpendiculars to the plane at the several points

of the line ab must necessarily pass through the points of the

line de, it foUow^s, that the direction of the sustaining force

must pass through some point of the line de.

39. If two planes of equal heights are placed back to

back, as in (Fig. 87.), and if the weights w, w' are laid on

them, connected by a cord passing over a pully at the

highest point, so that the parts of the cord shall be parallel

to the planes ; it will be requisite for equilibrium that the

cord should be drawn equally by the two weights, /'. e. that

the parts of those v/eights, which act in the directions of the

planes, should be equal. Wherefore, putting l, l' for the

lengths of the planes, and h for the common height, the

weights must be such as to satisfy the equation w. — r:

H W w'
w'.—^. or — zz —^. I. e. the weights which equilibrate in this

L L Li

manner, must be to each other, as the lengths of the planes

on which they are placed.

40. If the body is to be supported by two planes which

meet at an angle, its weight is to be equilibrated by their re-

actions : accordingly, the directions of those three forces

must meet at a point. And from hence are derived the con-

ditions relative to the planes themselves, and to the position

of the body to be supported.
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The plane of the forces, being perpendicular to each of

the inclined planes, must be perpendicular to their inter-

section. The same plane is also vertical ; inasmuch as it

contains the vertical line passing through the centre of gra-

vity of the body. Therefore, the intersection of the inclined

planes must be perpendicular to a vertical plane, i. e. it must

be horizontal. This condition, relative to the positions of

the planes, being satisfied, the body is to be placed so that

the plane passing through its centre of gravity, and perpen-

dicular to the intersection of the inclined planes, shall pass

through each of the surfaces of contact. If the body is not

so placed, it will not compose itself until this condition is sa-

tisfied; and then, the pressure on each of the planes shall

be to the weight, as the sine of the elevation of the alternate

plane, to the sine of the angle made by the planes. And

these, which are the total pressures on the planes, are to be

distributed on the points of contact, as already stated.

THE WEDGE.

41. The wedge is a triangular prism, i.e. a solid, bounded

by two equal and parallel triangular planes, and three rect-

angles contained between their parallel sides. Two of these

inclined faces are to be introduced between the bodies to be

separated ; and the angle, made by these faces, is called the

angle of the wedge. The rectangular surface, opposite to

this angle, is the back of the wedge, and to this the power is

applied.

Of all mechanical instruments, this may appear to be the

most simple : yet in accounting for its operation some variety

will be found, arising from the diversity in the nature of the

forces, both of those to be encountered, and of those by

which they are to be surmounted. In each of the instru-

ments already treated of, the force to be encountered was

ever applied in the same manner. But the resistances to be
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overcome by the wedge, may be forces applied immediately

to its faces, as in separating two distinct bodies ; or to its

edge, as in cutting ; or they may proceed from parts situated

beyond the edge, as in splitting or cleaving. And according

to the way in which these forces are applied, the several

parts of the instrument will be more or less effective. Also,

the power applied may be either simple pressure, or that

arising from percussion. But though the force brought into

action by percussion is, in general, that which is most effec-

tively applied to the wedge, yet as the treatment of percus-

sion belongs to Dynamics, the force employed as a power

must, for the present, be regarded as a pressvu'e or weight.

As the wedge is forced between the resistances, these

may be supposed to slide along its faces; and if this is done

without attrition, the faces will transmit only those forces

which act in lines perpendicular to those surfaces. Where-

fore, the resistances, when applied to the faces of the wedge,

can be equilibrated by the power, only when they act in di-

rections perpendicular to those faces. The same thing is to

be imderstood of the faces of a cleft, into which the wedge

has fully entered : these surfaces, being regarded as without

friction, can receive an impression from the wedge, i. e. from

the power, only in lines perpendicular. Wherefore, in all

cases, the power is to be resolved in directions perpendicular

to the surfaces through which the forces are to be trans-

mitted ; and the resistances are supposed to act in the oppo-

site directions.

The resistances being applied to the faces of the wedge,

let this be represented by its triangular end abc, and let df,

perpendicular to the back of the wedge, represent the power,

(Fig. 88.) Then if this line is made the diagonal of a paral-

lelogram GE, whose sides, dg, de, are perpendicular to the

faces AC, BC, it is evident that the force df will be in equili-

brio with the forces of resistance represented by gd, and ed

or FG. But the lines df, fg, gd, being perpendicular to ab,
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BC, AC, the triangle dfg is similar to the triangle abc:

wherefore, the power is to the sum of the forces which it

will equilihrate, as ab to ac + bc.

If the triangular end of the wedge is isosceles, as repre-

sented in (Fig. 89.) the power is to the sum of the resis-

tances, as half the back of the wedge to one of the sides,

i. e. as the sine of half the angle of the wedge to radius.

Hence it follows, that the more acute the angle of the

wedge, the greater the resistance which it will overcome by

the application of a given power ; and that the efficacy of the

instrument, estimated in this way, is inversely as the sine of

the semiangle.

42. In cleaving, the motion is along the faces of the cleft,

and therefore, the power is to be resolved in directions per-

pendicular to those surfaces, and the resistances act in the

opposite directions. Let the angle of the cleft be adb,

(Fig. 90.) ; and putting b for ab, the base of the triangular

end of the wedge ; and l for bd, the depth of the cleft mea-

sured from the points a or b, along its faces ; the energy

with which the power acts against the resistance, is p. -.
B

But as the resistance yields, not in a right, but in a curved

line, whose centre of curvature is at the angle of the cleft, it

is evident, that to estimate the efficiency of the instrument in

this use of it, we must take into account the leverage by

which the forces act. Now, the resistance to be overcome is

the cohesive force of the fibres, which are more and more

extended from the angle d, to the point of fracture. The
point D is, therefore, the fulcrum : and putting I for the dis-

tance from this to the point where the strains of the fibres

may be supposed to be concentred, r.^ shall be the moment

P.L
of the resistance : and ——, is the moment of the force to

B

which it is opposed. Wherefore, for equilibrium.
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T.ir
,

R.l.B— R.l. or, p :z —7—.
B L-

which shows in what way the efficacy of the wedge depends

on the constitution of the substance to be divided, as also, on

the size of the instrument. Being at present concerned in

estimating the power of the wedge, we shall suppose the ma-

terial to be given. In this case, r is given: also, the angle of

the cleft, or -, is constant ; and, therefore, I is likewise con-
L

stant. Wherefore, the power to be applied varies inversely

as L, i. e. inversely as b, the back of the wedge ; and the

efficiency of the instrument varies directly as that quantity.

Such is the advantage gained by the size of the wedge

when applied to a substance that yields in this manner.

When once the faces of the cleft part from those of the

wedge, the accuracy of the angle of the instrument becomes

of no value. And the same may be said of the magnitude of

that angle after that the v^edge has fully entered the cleft.

But in cutting, its efficacy mainly depends on this part. The
smaller the angle at which the faces are inclined, and the

more accurately they are brought to an edge, the less is the

number of parts whose cohesive strength is to be encoun-

tered. And if it is a soft or flexible substance that is to be

divided, the effect is to be ascribed to the angle exclusively.

For then, the faces of the incision, by reason of their flexibi-

lity, are incapable of transmitting the forces applied to them

by the power, to the part of the substance beyond the edge,

which remains to be divided. Those faces being then inca-

pable of acting as levers, the effect is altogether independent

of the depth of the wedge. The advantage arising from the

sharpness of the angle, in dividing a flexible substance, will

further appeir in the next section.
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THE SCREW.

43. The screw is an instrument consisting of two parts:

one of them is a sohd cyhnder ; the other, a hollow cylinder

of the same diameter. The former of these is encompassed

with a salient thread, proceeding round it in the form of a

spiral : and in the latter is a spiral groove, in which it may

be lodged. The solid cylinder is more especially called the

screw, and the hollow cylinder the nut. It is evident that

the screw cannot advance within the nut, or the nut upon

the screw, hut in the direction of the spires or threads, i. e.

by a motion compounded of two motions ; one of them circu-

lar, the other progressive. When one of these parts is

moved on the other, in this manner, it will press against any

obstacle by which its further progress is impeded. To as-

certain the force thus exerted by the moveable part, in rela-

tion to the power applied to move it, the form of the spiral

thread must be more particularly considered.

Let abc be a right angled triangle, whose base he is equal

to the circumference of the base of the cylinder, (Fig. 91.)

Then, if the line ah is applied to one of the sides of the

cylinder, and the triangle wrapped round it, the point c shall

reach the point h, and the hypothenuse ac shall become one

circumvolution of such a spiral. If the same thing is done

wnth a right angled triangle, whose base is 2ch, and whose

altitude is ^ah, its hypothenuse shall mark out two circum-

volutions of the same spiral ; and if the base and altitude

are och, 3ah, three circumvolutions shall be marked on the

surface of the cylinder, and so forth.

The spiral formed by the hypothenuse of a right angled

triangle, when its surface is thus wrapped round a cylinder,

is by geometricians called a helix. The base of the triangle

being taken equal to the circumference of the base of the

cylinder, its altitude is the interval between the spires mea-
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sured on the side of the cylinder, i. e. in a direction parallel

to its axis.

This may be represented in a manner somewhat different,

thus : let a rectangular parallelogram be described, whose

altitude is the side of the cylinder, and whose base is equal

to the circumference of its circular base, as in (Fig. 92.) Let

this rectangle be divided by the lines mn , rn'n", &c. parallel

to the base, and at the equal distances 7m\ nn , &c. and let

the transverse lines mn , mn , &c. be drawn. Then, if the

side of this rectangle is applied to the side of the cylinder

and the surface wrapped round it, the line mri shall become

the first spire ; and the point n falling on the point m , the

line inn' shall become the second spire, and the point n fall-

ing on the point m\ the line m'n" shall become the third

spire, and so forth : the several lines mn , mn, m"n", m"n"\

&c. becoming one continued spiral, proceeding from one end

of the cylinder to the other.

44. The thread of the screw is then an inclined plane,

carried round the surface of a cylinder : for which reason,

the ratio of the power to the resistance in equilibrio, is fur-

nished by the theory of the inclined plane. The direction

of the resisting force is plainly that of the axis of the cylin-

der or height of the plane. With respect to the relative mo-

tion of the parts, the moving power may be applied indiffe-

rently to the screw to move it within the nut, or to the nut

in the opposite direction to advance it on the screw : and the

resistances equilibrated by the same power, applied in these

two ways, shall be equal, but in opposite directions. Where-

fore, to assimilate this to the case of an inclined plane, on

which a weight is to be supported, the power may be sup-

posed to be applied to the nut, to carry it up a vertical screw,

against a resistance acting downwards. This power is ap-

plied in a direction parallel to cb, the base of the inclined

plane, (Fig. 91.) And if it were applied immediately at the

surface of the cylinder, the power would be to the weight as

N



178 STATICS. SECT. VII.

the height of the plane to its base. Putting h for ab, and c

for the circumference of the base of the cyhnder,

p : w : : A : c. or, p = -. w.
c

But the power is usually applied to the arm of a lever

inserted in the moveable part, as in (Fig. 93.) The ful-

crum being at the centre of the circular motion, ^. e. at the

axis of the cylinder, if r is put for the length of the arm to

which the power is applied, the enei'gy of that power at the

surface of the cylinder shall be p. -. giving

or,
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countered at those points : and if the power P is, in like

manner, distributed into parts n, n, n', &c. such that

//,

n — -. m,
c

,_h ,

w — -. m,
c

71 — -. m . cfec.

c

the equilibrium shall subsist at each point ; and therefore,

throughout the whole extent of the plane. And by adding,

we have

that is.

« +• w'+ w"+ &c. = -. (m + m-\- m + &;c.)

h
p = -w.

c

4j. The mechanical advantage afforded by this instru-

ment is increased, either by augmenting the length of the

lever handle, or by diminishing the interval between the

spires. But the augmentation of the length of the lever

handle is an increase of bulk, which it is desirable to avoid.

And to the diminution of the interval between the spires,

there is a limit, arising from the necessity of leaving suffi-

cient strength in the parts to endure the enormous pressure,

and consequent friction, without breaking. The device of

Mr. Hunter, published in the Philosophical Transactions

of the year 1781, seems well fitted to give any power to the

instrument, without either of these disadvantages. In this

instrument, represented by (Fig. 94.) the screw which turns

within the nut, is not solid as usual, but is itself the nut of a

somewhat finer screw, on which it turns.

To shew the power of this contrivance, let h be the in-

terval between the threads of the exterior, and h' that be-

tween the threads of the interior screw. Now by one revo-

n2
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lution of the exterior screw it would be carried forward

through the space //, and the interior screw, if firmly at-

tached to it, would be carried through the same space. But

the revolution of the interior screw is prevented by a cross

bar by which it is perforated, and which bears against the

frame work, wherefore that screw will perform one revolu-

tion relatively to the exterior screw, and in the opposite

direction, and therefore shall move upwards through the

space h'. The space actually described by the interior screw

is the difference of these, or h — //. Thus, when hzzz-— of an

inch and // = —- the progressive motion is (— —— Jofan

inch =. T-jTjth of an inch.

It appears then, that the instrument, in this example,

combines the mechanical advantage of a screw, the interval

between whose threads is but the ixoth of an inch, with

the strength of one whose threads are ten times as gross :

and this, without increase of bulk, or any disadvantage, ex-

cept what may arise from increase of friction.

It would seem that this contrivance might be benefi-

cially adopted in the construction of micrometer screws, and

a degree of accuracy thereby given to our observations,

altogether unattainable by the most delicate instruments

now in use. Thus, if the exterior screw has 50, and the

interior screw 51 spires to an inch, we should obtain the

advantage of a screw of the ordinary construction, having

2550 spires to an inch. In general, the number of spires to

an inch, in the equivalent screw of the common construc-

tion, is the product of the numbers of the spires to an inch

in the two members divided by their difference.

46. There is another modification of this instrument,

called the endless screw : so named, because by turning, it

never comes to an end. It is evident that this advantage
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can be obtained, only when the motion of one of the parts

is circular. The screw, in this instrument, consists of a few

spires ; and these work in the teeth of a wheel, which,

therefore, serves in place of a nut; as represented by

(Fig. 95.) The screw has a circular, but not a progressive

motion. By the action of the spire engaged, the tooth of

the wheel would proceed forward : but the wheel is limited

to a circular motion round its axis ; and by this motion the

tooth is soon disengaged from the spire, and then its place

is supplied by another tooth, which is acted on as the

former ; and this tooth is succeeded by a third in the same

manner ; and so on perpetually.

The mechanical effect of this combination is thus esti-

mated.

Let c, as before, be the circumference of the circle de-

scribed by the winch handle, r its radius ; /^, the interval

between the spires. Also let r' be the radius of the toothed

wheel, and r that of its axle. Then p' being the force equi-

librated by the screw alone, there is

p = - p.
c

But the force p' is immediately applied at the circumference

of the toothed wheel, and equilibrates the weight applied at

its axle. Wherefore

r
p =: —7. w.

r'

Multiplying these equations, there is

Ji r
p = -. -7-. w.

c r

Now h, the interval between the spires of the screw, is

also the interval between the teeth of the wheel : wherefore

if 71 denotes the number of teeth, and c' the circumference

of the wheel, there is nh zz. c, and h — — . This value of h
n
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being substituted in the last equation, it becomes

n c R'

or smee

it is

i. e. the power is to the weight, as the radius of the axle

which carries the weight, to the radius of the circle de-

scribed by the winch handle, multiplied by the number of

teeth in the wheel.

_1
~'
n
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SECTION VIII.

THE FUNICULAR POLYGON AND CATENARY.

1. If a system of forces is in equilibrio when applied to

a body of variable form, it is evident that the equilibrium

shall not be violated should the body become rigid. Hence

it follows, that the conditions to be satisfied for the equili-

bration of forces applied to a rigid body, should also be

satisfied in the case of a body of variable form. But it is

equally evident that, in this latter case, these conditions are

not sufficient, i. e. that other conditions are to be fulfilled in

order that the body may become capable of opposing to each

other the forces of the system. These conditions relate both

to the nature and the form of the body. With respect to

the former, it is plainly requisite, that the body should be

capable of transmitting the applied force from one point to

another, and, therefore, that the parts between the points of

application should be either inextensible or incompressible,

at least to a degree sufficient to resist the action of those

forces.

If the body is simply inextensible, it shall be capable

only of transmitting divellent forces, i. e, forces which tend

to increase the distances between the points of application :

and if it is simply incompressible, it shall serve only for the

transmission of compressing forces. A flexible but inexten-

sible cord affords a famihar example of a body of the former

kind. Let o, o, o", o'", o"", be the points of such a cord

(Fig. 96.) to which the forces p, j/, p", p",j)"", are applied;

these forces must be divellent : therefore, the forces 2h p"",

applied at the extreme points, must act in the directions o' o,
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d" o"", and the forces ^/, p", p", applied at the intermediate

points, must be directed to the exterior side of the polygon.

If the lines od, dd' , d'd", d"d"', represent a system of rigid

bars barely apposited, they will serve only for the transmis-

sion of compressing forces, i. e. of forces directed towards

the interior of the polygon, or contrary to the former. But
if the bars are connected by hinges, the system may serve

indifferently for the transmission of distending or compres-

sing forces.

2. When two forces are applied at the ends of a cord,

and others transversely at so many intermediate points, as

described in the preceding article, the figure assumed by the

cord is that denominated the funicular polygon. Let the

cord be that exhibited in the figure ; and o, d, d', d", d'",

the points to which are applied the forces p, p'
,
p"

^
p'", p""

,

acting in the same or in diflferent planes. To investigate the

conditions to be satisfied in order that these forces should

equilibrate, we shall first suppose the equilibrium to subsist.

The conditions which follow from that supposition will be

necessary.

Because of the flexibility of the cord, the forces can act

against each other only in the lines od , dd', d'd" , d"d"'

.

Let these forces be represented by the lines ko, ds, d's',

d"s", r'd'". and let all between the first and last be resolved,

each in the directions of the branches of the cord contiguous

to its point of application, as os into dm, o'k ; d's into o"w,

d'ni ; d"s" into d"n, d"r. and as the forces applied at the

ends of the entire cord are necessarily in the directions of

the first and last branches, the whole system of forces jt?, jt?',

p",p"',p"", shall be replaced by another system of forces

directed along the sides of the polygon: and if the equili-

brium exists among the forces of the former, it must continue

to subsist among those of the latter system.

But among these it cannot subsist unless each part of the
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cord is drawn equally in opposite directions. This condition

gives

ok •\-ok'zzO. o'ni'-{'o"m'= 0. o"H-\-o"'nzzO. o"'r -\-o""r' — Q.

Because these forces are the tensions of the parts, they

may be denoted by t, t', t" , &:c. and the system shall be

t— t-\-t'—t'-^t"—t"-{-t"'— t'". whose sum is cypher. These

tensions may be different for the different branches of the

cord, the tension of any branch being the resultant of all the

forces acting at either side of that branch : for the force ^j or

t, acting at o, and in the direction of the line oo', may be sup-

posed to be immediately applied at the point o', where, if

compounded with the force // or f—t, the resultant shall

be + i'> arid this resultant of the forces p, p , being in the

direction of o'o'\ may be supposed to be immediately applied

ato", where, if compounded with the force ^", or t"~t', the

resultant, which is that of the three forces^, ^', />", shall be

t". In like manner, beginning at the other end of the en-

tire cord, the force //'" or —f may be supposed to be im-

mediately applied at the point o", where, if compounded

with the force/)'" or t"'—t", the resultant shall be — /". Thus

it appears that the equal forces by which the branch o"d" is

strained in opposite directions, are the resultants of the

groups of forces acting at each side of that branch ; or that

the resultants of the forces p, &c. taken from either end of

the entire cord to any angle of the polygon, is in the direc-

tion of the portion next ensuing, and that it constitutes its

tension.

Further : because the equilibrium is supposed to exist in

the entire cord, it must exist among the forces acting at each

angular point. But these consist of one of the forces p, ap-

phed immediately at that point, and of the tensions of the

adjacent branches of the cord ; and those two tensions being

the resultants of the groups preceding and following, may be

replaced by those forces ; whence it follows, that the whole
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system of forces ^;, p' ,
p", p", p"", must equilibrate at the

same point. Thus the lorces acting at the point o" are

t\ — /"and^y, and if these three are in equiUbrio at that

point, tlie equiUbrium shall continue when the forces t' and

— /" are replaced by their components; but t' is the resul-

tant of the forces p, p \ and —f of the forces p"
^
p"'\

Hence it follows, that any system of forces in equilibrio when

acting against each other by means of a funicular polygon,

would also equilibrate about any material point to which

they may be transferred in parallel directions.

The same thing appears by the tensions into which those

forces have been resolved ; these tensions being equal and

opposite in pairs.

It now appears that a system of forces cannot equilibrate

by means of a funicular polygon, unless the following condi-

tions are satisfied. 1st, The forces must be such as would

equilibrate about a material point to which they may be

transferred in parallel directions. 2d, Each branch of the

cord must be parallel to the direction of the resultant of the

forces acting at either side of that branch. Further, it is

evident, that when these conditions are satisfied by the forces

applied, and the form of the polygon, the equilibrium must

necessarily subsist. For the first branch being taken in the

direction of the force p, that force may be supposed to have

been immediately applied at the point d \ and the second

branch being taken in the direction of the resultant of the

forces p and p acting at d , this resultant may be supposed

to be immediately applied at the point o", and so forth. In

the same manner it may be shewn, that the resultant of all

the remaining forces acts at the same point o" ; and the same

may be shown of any other angle of the polygon.

It appears, then, that when this form is given to the poly-

gon, the whole system of forces acts at each angle ; and that

if these forces are such as would equihbrate about a material



THE FUNICULAR POLYGON AND CATENARY. 187

point, the equilibrium shall necessarily subsist at each angle

of the polygon.

It is now proved, that for equilibrium among forces

acting against each other by means of a funicular polygon,

it is requisite and sufficient that the forces should be such

as would equilibrate about a material point to which they

may be transferred in parallel directions, and that each

branch of the polygon should be taken parallel to the direc-

tion of the resultant of the group of forces from either end

of the entire cord, to the nearer extremity of that branch

inclusively.

3. Seeing that when the applied forces, taken from either

end ofthe entire cord to any ofits angles inclusively, are trans-

ferred in parallel directions to a material point, and there com-

pounded, the resultant is equal to the tension and parallel to

the direction of the succeeding branch ; it follows that the

tension and direction of any branch are given by the same

equations which determine the magnitude and direction of the

resultant of a system of forces acting on a material point.

Thus let there be three rectangular axes meeting at a point,

and let a, a', a" a„. be the angles made by the several

branches of the cord with the axis of a; ; b, h\ h" i„.

those which they make with the axis of y; and e, c',

c" c„. those made with the axis of^. Likewise let

a, a, a! a„; b, j3, [5' b,,; c, y, y' c„,

be the angles made by the directions of the forces ^;, //,

p" -Pn-]-!) with the same axes. Then as the tension of

any member, as t", is the resultant of the forces p, p ,
p"

.

there shall be

t".0,0%.a zi p. 0,0%.a 4-^'.cos.a +/* '-cos-a'. \

Acos.6"=:^j.cos.6+ij'-cos./3-|-p"-cos./3'. v (1)

^".cos.c"^z:^.cos.c -\-p .dQ^.y •\-
p".oo%.y' . I

Or, putting x", v", z", for the second members, i. c. for
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the sums of the forces /?, p ,
p", reduced to the directions

of the axes of x, y, %, the equations shall be

r.cos.a"= x". \

r.cos.b"=r\ I {2)

r.cos.c"=:z". j

Whence by squaring and adding, there are

r='v/x"^-hY"^+z'^ (3)

and

cos.a zz cos. 6 =
V x"^+ y"^+z"^ V x"2+ y"H z'"

z"
cos.c'^:= '

. (4)
Vx"^'+y"^4-z"'

These equations applied to the last branch give the va-

lue and direction of tn, which are already known
;
yet these

equations are not therefore useless, for replacing t„ with its

known value, —pn + i, in equations (1), they become

p. COS.a -{-p'.cos.a-^ p'\cos ex," -{-pn+i.cos.an := 0.

p.cos.b -\- p\cos. (5'+p".cos.fi" -|-/?„^-i.cos.6„ = 0.

p.cos.c -{-p'.cos.y'-^-p'.cos.y" -\-p„^.^.cos.Cn — 0.

Which express the condition to be satisfied in order that

the equilibrium may be possible.

If the cord is attached to a fixed point at one end, the

equations give the tension and direction of the last branch
;

and as in this case, the number of equations is only equal to

that of the unknown quantities, the problem is not restricted

by any condition, and the equilibrium is therefore always

possible.

If the cord is attached to fixed points at both ends, the

equilibrium is possible a fortiori. In this case it is not

solved by these equations, which are fewer than the number

of unknown quantities, of which there are eight, viz. ji and
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p„ + i. And the angles a, b, c, a„, b„, Cn. But the problem

is not therefore indeterminate, for beside the three equa-

tions (1) there are the two following, viz.

cos.^a + cos.^b + cos.Vrz 1. cos.^a„+ cos.'^b„-{- cos.^(?„= 1.

with three others arising from this, that the fixed points

are given in position. For taking one of those points for

the origin of the coordinates, those of the other fixed point

may be expressed as functions of the quantities which enter

into the other equations, and of the lengths of the several

branches of the cord, which last are given. The expres-

sions to which this computation would lead are exceedingly

complicated ; and as their value would not reward the labour

of the analyst, it seems sufficient thus briefly to point out

the method by which the figure of the polygon may be com-

pletely ascertained.

4. The extreme points being fixed, if the forces applied

at the intermediate points are parallel, the sides of the po-

lygon, and therefore, also, the directions of the forces must

all be in the same plane. For the plane of any two conti-

guous sides contains the direction of the force applied at the

angle made by those sides, and the plain of any two succes-

sive parallel forces contains the intermediate side of the

polygon. Thus, the plane oo'p' is the same with the plane

p'o'o" (Fig. 99.) And the forces p\ p'' being parallel, the

plane p'o'o" is the same with the plane p"o"o. The same

reasoning may be continued through the whole system of

lines.

If the forces are appended weights, their resultant acts

in the vertical passing through their common centre of

gravity. And as the reactions of the fixed points are in

equilibrio with this resultant, it follows, that the directions

of the two extreme portions of the cord shall meet at some

point of the vertical passing through the common centre of

gravity of the weights. And similarly, the tensions of any
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two parts of the cord, regarded as divellent forces, being in

equilibrio with the weights appHed at the intermediate points,

those parts, if produced, shall meet at some point of the

vertical passing through their common centre of gravity.

Thus, oo', o""o"' produced, shall meet at the same point of

the vertical passing through the common centre of gravity

of the weights ]j',p", p'", and oo' , o'^'o", produced, shall meet

at some point of the vertical passing through the common

centre of gravity of the weights p, p". Wherefore, the

theorem which expresses the relations of the three forces

engaged at any one angle of the polygon may, in this case,

be extended to the strains of any two parts, however remote,

and the sum of the weights applied at the intermediate an-

gular points, i. e.

t\t"'\p' -\-p" -^p'"

: : sin. c' : sin. a : sin. (a + c').

The case of a cord loaded with weights being that which

offers itself most to our notice in this theory, it may not be

amiss to shew how the tensions and weights may be repre-

sented by a simple construction.

From any point, o, let there be drawn the lines oo', oo'',

oo'", &c. (Fig. 100.) respectively parallel to the sides of the

polygon, and meeting the vertical line in the points o', o"

,

o'" , &c. then the three forces t, p', — t', which are in equi-

librio about the point o', (Fig. 99.) shall be represented by

the lines oo', o'o", and o"o. Likewise, the three forces

/', p", and — t", in equilibrio about the point o", shall be

represented by the lines oo", o"o"', and o"'o : and so of the

three forces which are in equilibrio at any other angular

point.

Moreover, + 1' and — t', which are of the same magni-

tude, being represented by the same line oo" or o"o, it fol-

lows, that the sides of the triangles oo'o" , od'd", shall serve,

not only to exhibit the relations of the three forces acting at
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one and the same point, d or o", but also to compare the

forces acting at one of those points with those which act at

the other : and the same thing being observed of all the tri-

angles, it follows that there is this proportionality.

t
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polygon loaded with weights, merely by supposing the num-

ber of those weights to be infinite.

As it will be sufficient to consider one branch of this

curve, its lowest point may be supposed to be fixed ; and,

therefore, the other branch may be cut away. This being

premised, let ov be one branch, terminating in the lowest

point, V, (Fig. 101.) in which, taking any point, 7n, and draw-

ing the tangent tns, and the horizontal line ?«/?, let these lines

meet the vertical passing through the point v, at s and //

;

then putting e for the angle hms ; w for the weight of the

cord between m and v ; t for the tension at the point m ; and

A for the tension at v, the relative magnitudes of t, a, w shall

be represented by ms, mh, hs. Wherefore,

hs , ,

w^ 1= A. —-,
=: A. tan. e. (a)

?)ih

ms A
,
,

.

T = A. — = {b)
mh cos.e

Showing that the weight between any point m, and the

lowest point, varies as the tangent of the inclination to the

horizon at the former point ; and that the tension varies in-

versely as the cosine, i. e. directly as the secant of the same

angle.

If the cord is uniform, the curve is called the homo-

geneous catenary, in which w r= X's ; s denoting the length

measured to the lowest point ; and h the weight in a unit of

length. Wherefore,

A. tan. e z= lis. (c)

From which it appears, that the two branches into which the

homogeneous catenary is divided by the lowest point, are

precisely similar.

Taking the point v for the origin, and the horizontal line

through this point, vr, for the axis of the abscissae ; and the

vertical vh for the axis of the ordinates, there will be for any

point of the curve, as tn,
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vq ~ X, mq zz y, and tan. e zr. —

.

Whereby equation c becomes

A.dy=.k.s.dx. {d)

And as ds — \/{dy^-\- dx^), any of the three quantities, y, x,s,

may be eliminated, and an equation obtained between the

remaining two.

- , ,_ A
To render the expressions more smiple, let a _ t ;

whereby equation (d) becomes

A'dy — s.dx.

which, being differenced, gives

A'cP2jzzV{df+dx^).dx.

And multiplying both sides by . .^ , 2\>
i* ^^^^^ ^^

h'.dy.d'^y _

that is,

a', d. V {di/-\- dx'') - dy.dx.

Wherefore, by integration,

a'. ^/ {dy~-\- dx^) = ydx + cdx.

For the lowest point, v, there will be

'y=0. di/= 0.

which gives

c r: a'.

and therefore,

a' V (^/ + dx"")- (a' + y) dx. {e)

for the difFereniial equation of the homogeneous catenary.

This being integrated, gives

2. = dy.dx.

X — a', log.
/A^+y+V(gAV/ + r)\
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From which it appears, that the homogeneous catenary is a

transcendental curve.

To find equation between y and s, let dx be eliminated

between the equations A'dy zz s.dx, oxvdi. ds zz. yj {dif -\-dx^)»

and we shall have

^^-^\- ds" - dy\

or

{p^''J^s^)dy''-s',ds'.

and

s. ds .

VW+7) = '"

And by integration,

VW' + s')zzy + c.

But for y = 0. there will be * = 0. Wherefore,

c =: A'

;

and V (a'^ ^ s-) = y + a'.

so that

s''= y(2A' + y).

which shews that the homogeneous catenary is a rectifiable

curve ; its length from any point to the lowest, being a

mean proportional between y and 2a' + y- Wherein y is

the ordinate of the highest point of the portion to be rec-

tified.

6. If any of the forces, as //", is applied to a ring, or

loop running on the cord, its direction must bisect the angle

made by the adjacent branches o"o"', o"'o"". For if the

equilibrium subsists, it shall not be violated by fixing the

points o", o"" : and then the ring is confined to the surface

of an ellipsoid whose foci are those points, and whose major

axis is equal to o"o"' + o"'d"'. On this surface the ring

cannot rest unless the direction of the force is normal : i. e.

unless it bisects the angle made bylines drawn from the point

of apphcation to the foci. These angles being equal, the
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tensions of the branches o<'o"' , o"'o"" , also must be equal

:

and if all the forces j) are applied at rings, the tension must

be the same throughout the entire cord. This indeed is

evident, inasmuch as the whole is then one cord ; and from

this consideration, what has been proved relative to the

directions of the transverse forces would have immediately

followed : for the tensions of o"o'" and o"'o"" being equal,

they must make equal angles with the direction of the force

p" by which those tensions are equilibrated. This is the con-

dition of a cord strained round a polygon. The transverse

forces are the reactions of the angular points, the reaction at

any point being equal to the tension multiplied by twice the

cosine of half the angle. Thus, putting w for the angle,

there i^ p — %t. cos. -.

If the sides of the polygon are indefinitely small, and

their number indefinitely great, the polygon becomes a curve.

The tension of the cord is in every part the same, and there-

fore equal to the force by which it is strained at each end

;

but the transverse force acting at any point, /. e. the reac-

tion of that point of the curve, and, therefore, the pressure

upon it is incomparably smaller than the tension. This

appears from the preceding equation, for considering the

curve as a polygon, with an indefinite number of sides, the

angle -. becomes a right angle whose cosine is cypher.

Wherefore, in the case of a curve, the transverse force, to

be comparable with the tension, must be taken, not for

a mathematical point, but for some definite portion of the

curve.

To obtain the pressure on an element of the curve, which

shall be supposed to be of single curvature, let n be the

pressure made by a unit of length. This may vary from one

element of the cord to another, but may be considered as

unvaried in the same element ds. Now, referring this ele-

o2
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ment to the axes of x and //, as the tension at any point is

the resultant of all the forces applied to the cord from the

beginning up to that point, it follows that the tension, re-

duced to any one direction, is the sum of all the applied

forces reduced to the same direction. Wherefore, a being

the angle formed by the tangent at the first point of ds, any

element of the cord, with the axis of x, and a being the angle

made by the direction of the tangent at the beginning of the

curve, with the same axis there is — ^.cos.a = ^cos.« -f- \n.

sm.a.ds. and differencing, t.da. — n.J*. Now, w being the

angle made between the perpendiculars to the tangents at

ds, and the beginning of the curve, there is da,:=zdto. Where-

ds
fore, by last equation, t.dio = Nds. Butf?w — — . wherein r

is the radius of curvature. Wherefore,

t

N Z= - .

R

which shows that the pressin'e on the curve is every where

inversely proportional to the radius of curvature.

If the cord is strained round a cylinder with a circular

base, there is r = constant, and n r= constant. In this case

the equation ^ds — t.dw, by integration, gives ns ~ /w -|- c.

and as at the beginning of the arch there is szz o, u) = o.

there is also c =: o . wherefore the equation is

N* = fu).

which shov/s that the pressure on any arc s, is the product

of the tension into the angle of incurvation ; viz. into the

angle made by two perpendiculars to the arc, raised at its

two extreme points ; and that the pressure made on the cy-

linder by each circumvolution of the cord, is 2Tri. viz. the

tension multiplied by the number expressing the ratio of

the circumference of a circle to its radius.
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Library,SECTION IX. ^
— ^-- — -'•'•

OF THE EQUILIBRIUM OF ROOFS, ARCHES, AND DOMES.

1. To support a beam by two forces applied at its ends,

the forces, if not vertical, should be directed to some point

of the vertical passing through the centre of gravity of the

beam: and further, the two forces and weight should be

proportional to the sines of the angles contained by their

directions ; each force being as the sine of the angle con-

tained by the directions of the other two forces. Therefore,

if the beam is given, together with the direction of one of

the sustaining forces, the whole is given : for if the given

line of direction is produced to meet the vertical passing

through the centre of gravity of the beam, the line, drawn

from the other end to this intersection, gives the direction

of the other sustaining force; and each is to the weight, as

the sine of the angle made by the other sustaining force and

vertical, to the sine of the angle contained by the directions

of the sustaining forces.

The two following examples are given, as of much im-

portance in practice.

2. A beam rests with one end against a wall: the pres-

sures on the points of support are required.

Let the beam be ab, (Fig. 102.) resting against the wall

at A ; and let o be its centre of gravity. The wall being

supposed to be perfectly smooth, its reaction is according

to the perpendicular to its surface, at tlie point A. Let this

perpendicular be ag, meeting the vertical passuig through

o, at G. Now if the end b were to rest on a horizontal plane,

and if this plane were also perfectly smooth, its reaction
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would be vertical ; and the beam could not possibly be sup-

ported by these reactions. To support the beam, the force

applied at b must be in the direction bg : and then, if the

horizontal line, Bn, is drawn, meeting the vertical passing

through o, at w, the three equilibrating forces shall be as

the sides of the triangle bgw, parallel to their directions.

And if the force bg is resolved into two, one of them vertical

and the other horizontal, these will be no, Bit, the former

equal and opposite to the weight, and the latter to the re-

action of the wall,

Putting F, w, T for the force eg, the weight and the

horizontal thrust, we shall have

BG Bn
F = w. —

.

Tr:w.—

.

AD AD

Moreover, making ab : ob : : a : 1. we shall have

BD , BD w
Bniz— and t — w.

a a. AD a. tan. abd

Whereby it appears, that in a given beam, the horizontal

thrust varies inversely as the tangent of its inclination to

the horizon ; and accordingly, that for the horizontal posi-

tion, the thrust is infinite.

If the span bd is given, the thrust shall vary as the

weight divided by the vertical height of the point a, above

the point b; i. e. if the weight of the beam is as its length,

the thrust shall be inversely as the sine of the inclination to

the horizon,

3. If the beam rests on a prop at the upper end, as on

the edge of a wall, the reaction of the prop shall be per-

pendicular to the beam. Wherefore, drawing the line AG

perpendicular to ae, meeting at g the vertical on, passing

through o, the centre of gravity, i^Iig. 103.) the direction

of the support at b must be bg. And the line Bm being

drawn parallel to ag, the three equilibrating forces shall

be as the sides of the triangle GBtn, parallel to their direc-
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tions ; i. e. putting p for the reaction of the prop, we shall

have

mn BG , Bn
p = W. . F = W. . andTrrw. .

Gm Gin Gill

Making ab — a. ob. we shall have

Gjn = a. of/i.

and

niB COS. ABD
p — w. = w. .

a. om a

BW W
T = W.

a.om a(tan.+ cot.) ABD
'

and T shall be greatest when (tan. + cot.) abd is least ; i. e.

w
when ABD = 45°. Its value being then, — . from which it

diminishes to cypher, as the beam approaches either to the

vertical or the horizontal position.

If the beam is bisected by its centre of gravity, « = 2.

w
and at the elevation of 45°, t = -—.

4

If the span, b« =— , is given ; and if w varies as the

length of the beam, the thrust shall vary as — ; i. e. as the
om

sine of the horizontal elevation of the beam.

The case, considered in the last article, is that of a rafter

abutting against another, the top or ridge being at liberty

to descend in the vertical. The present article relates to a

rafter loosely supported on a prop at the upper end, and at

liberty to slide from it, in the direction of its length.

4. If the funicular polygon loaded with weights is in-

verted, it is evident that the weights, decomposed according

to the directions of the sides, shall become thrusts instead

of tensions, i. e. compressing in place of divellent forces

;

and that these thrusts are to be communicated from one

point to another, by incompressible bars, instead of inex-

tensible cords.
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The weights applied at the angles, when resolved in the

directions of the bars, yield components depending on the

angles of inclination, as in the funicular polygon : and when
the equilibrium is established, the thrusts in each separate

bar are equal and opposite. Wherefore, putting thrusts for

tensions, the theory of the equilibration of apposited bars

is the same as that of the funicular polygon loaded with

weights ; and established by the same reasoning. The
weights, it is true, are never placed at the angles exclu-

sively: but the vertical pressure on any bar or beam, in-

cluding the weight of the beam itself, may be referred to the

extreme points ; i. e. to the angles of the polygon. For the

portion of the weight bearing on either extremity, is to the

entire weight, as the distance of the centre of gravity from

the other extremity to the entire length of the beam. The

vertical pressure made on the same point, by the beam

which constitutes the other side of the angle, is found in the

same manner ; and the sum of these is the pressure on the

intermediate angular point. In a roof covered with mate-

rials of uniform thickness and density, the weight on each

angular point is half the sum of the weights on the contain-

ing sides.

Thus, let o, o', o", o'", o"" be the polygonal roof (Fig. 104.)

;

P) P'> v" i p"'i P " *he weights incumbent on the angular

points, or suspended from those points. Then, the weights

at each angle being resolved in the directions of the rafters

which meet at that point ; it is requisite and sufficient for

equilibrium, that the thrusts in each bar should be equal

:

t, t', t", t"' being those thrusts, we have

, sin.a , ,, sin.i'

P'
~—

T'"T
—

T\
—t— P '

' sin.(« -f a') ^ *sin.(6 + 6')'

or,

,
sin.

a

„ sin.
6'

sin.a.cos.ff -j-sin.a'.cos.a sin.6 .cos.i+sin.6.cos.6'
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P £
cos.tt'+sin.a'.cot.a cos.6 -\-^\x\.b.co\..b'

Or dividing the denominators by sin. a', sin.Z>, which are

equal, it will be

P' _ P"
cot.a + cot. a' cot.6 + cot.

6'

'

and so of the rest.

It is to be observed of the angles of the polygon, except

that at the highest point, that the parts into which they are

divided by the vertical lines, are, one of them acute and the

other obtuse ; and, therefore, that the co-tangents of those

parts'^ are affected with opposite signs. The theorem,

therefore, agrees, as it should, with that for the funicular

polygon ; where we had

p' _ p
tan.e — tan.e' tan.e' — tan.e

-, &c.

-^—

—

J (= f . sin. a') is the horizontal thrust;
cot.« + cot.

a'

whereby it appears, that the horizontal thrusts are equal

throughout the system.

The number of equations thus supplied, is one less than

the number of angles in the polygon, i. e. n being the num-

ber of rafters, it is n — 2. Putting w-, m', m", &c. for the

lengths of the rafters ; s for the span ; and k for the height

or pitch, we have also the equations

s = in. sin.a+m'.sin.6+ Sec. h= tn.cos.a 4-???/.cos.6 + &c.

the rafters, concerned in the second of these equations,

being those on one side of the highest point. If the poly-

gon is symmetrical, the number of distinct equations is less

than that of the unknown quantities. For example, if it is

proposed to construct an equilibrated roof of four equal raf-

ters, m, (Fig. 105.) the structure being symmetrical about
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the vertical passing through the highest point o", it will be

sufficient to consider one half; and for this we have, from

the conditions of equilibrium,

cot.a + cot.a' = 2 cot.b.

but

wherefore,

cot.a' = — cot.b.

cot.a = 3 cot. 6.

Moreover,

h = m{cos.a + cos.b), s = 2m{sm.a + sin. 5).

The quantities here concerned are 7n, s, k, and the angles a

and b ; and as there are but three equations, it is requisite

that two of these five quantities should be given: one of

them being a line.

5. In constructing an arch of masonry, a piece of frame

work, called a centre, is first erected, whose circumference

corresponds to the figure of the intended arch. On this are

placed truncated wedges, called voussoirs, beginning at the

piers or abutments, and finishing at the top or crown. On the

voussoirs are laid other materials suitable to the particular

purpose ; whether to support a road way, an aqueduct, or a

building. The centering is then removed, and the whole

abandoned to the mutual pressures of its parts. The vous-

soir at the crown is called the key-stone ; the interior curve

the intrados ; and the exterior the extrados.

In treating of the equilibration of such a structure, the

faces of the voussoirs are supposed to be perfectly smooth,

and therefore incapable of transmitting lateral pressure, eX'

cept in directions perpendicular to the joints.

The tendency to descend, in each voussoir, by its weight

and that of the load it carries, is to be equilibrated by the la-

teral thrusts of the voussoirs on each side : or, which is the

same thing, those weights, resolved in directions perpen-

dicular to the joints, should yield components equal and op-

posite in pairs, i. e. the weight of each voussoir, including

that of its load, should be resolvable into forces, equal and
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opposite to the pressures against its faces. Accordingly, the

theory of the arch may be derived from that of the wedge,

or of the catenary. Because of the importance of the pre-

sent subject, it is proposed to consider it without reference

to those theories.

Let the arch be that represented in (Fig. 106.) a, b, c, d,

&c. the voussoirs; ab, ab\ &c. the joints; and cd, c'd', &c.

the vertical lines passing through the centres of gravity of

the several voussoirs, and the weights with which they are

loaded.

The pressure made by the key stone, against the face of

the contiguous voussoir, is the resultant of the pressures

made by all the points of its face ab ; and this resultant may

be applied at any point of that face. If m is that point, let

mo, perpendicular to ab, be continued to meet the line c'd'

at o' ; and let oW, perpendicular to a'b', meet the line c"d"

at o" ; and o"m", perpendicular to a"b", meet the line c"'d"'

at o'" ; and let o"'m"' be perpendicular to a"'b"', &c. The

broken hne, ooo"o"''m"', shall be the line of pressure for one

side of the arch ; and it is similarly made out for the other

side. As a voussoir can support a pressure, only when di-

rected perpendicularly against its face, it follows, that if the

line of pressure passes above the lower voussoirs, the upper

part of the arch must spread over them ; the arch descend-

ing at the crown, and rising at the haunches : and that if the

line of pi-essure passes below the lower voussoirs, the arch

shall fail in the opposite way, i. e. by rising at the crown,

and descending at the haunches.

The line of pressure may vary through a space, depend-

ing on the depth of the voussoirs ; and this affords the

means of providing against the failure of the structure in

this way. Thus let two curve lines be described perpendi-

cular to the joints ; one of them passing through the upper,

and the other through the lower extremity of the key stone.

The condition, relative to the line of pressure, requires that
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every joint should be contained, in the whole or in part, be-

tween those curves ; and this condition is the more easily

secured, the greater the depth of the voussoirs.

If this condition is not satisfied, the forces cannot be

opposed to each other, and therefore the equilibrium can-

not subsist; but this being satisfied, it may be established :

and for this it is requisite, that the resolved forces should

be equal to those by which they are to be severally sup-

ported.

To develope this second condition, let the line CD be

vertical, and dd„, horizontal : and let the lines cd', cd'',

cd'", &c. be parallel to the joints ab, a'b' , a"h", &c. Then,

in order to consider one-half of the arch, let the voussoir, a,

be supposed to be divided into two equal parts, by the line

CD. The weight of the half voussoir, cabd, is perpendicular

to dd'; and the forces into which it is resolved, are perpen-

dicular to CD, cd'. Wherefore, this weight and the forces,

into which it resolved, shall be represented by dd', cd, cd'.

In the same way, if the weight of the voussoir b, is re-

presented by d'd'', the forces into which it is resolved shall

be cd', cd". And conversely, if these are the resolved

forces, dd" shall be the weight of b ; and so of the rest.

This statement is altogether independent of the sup-

position of equilibi'ium among the several voussoirs. But

for equilibrium, it is requisite that the thrusts should be

equal, as well as opposite. Wherefoi'e, if the weight of

half the voussoir a, is represented by dd', and accordingly

the forces into which it is resolved by cd, cd', one of those

into which the weight of b is resolved, must be likewise re-

presented by cd' ; and, therefore, its weight, and the other

of the forces into which it is resolved, by d'd" and cd". And
the thrust from above, against the joint a'6', being cd", this

must also represent the opposite thrust from below ; and

accordingly, the weight of c, and its resolved forces shall be

d"d'", cd", cd'". Thus the lines of the figure shall serve
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to compare, not only the weight of each voussoir with the

forces into which it is resolved, but all the, forces promis-

cuously : the weight of the half voussoir a, and those of the

rest being represented by dd', d'd", d"d"', &c. and the

thrusts at the several joints by the lines cd', cd", cd'", &c.

Wherefore, if w\ w", w", &c. are the weights ; and «', a\

a", the angles made by the joints with the vertical, v/e shall

have

10 m w

tan. a tan. a — tan. a tan. a"' — tan. a"

w' + to" + iv"

tan. a

i: e. the weights of the several voussoirs are as the differences

of the tangents of the angular inclinations of their faces to

the vertical ; and the weight taken from the crown to any

joint, as the tangent of the angle made by that joint with

the vertical.

Putting t', t" , f, &c. for the thrusts perpendicular to

the joints, these are as the secants of the same angles, i. e,

t' _ t" _ t'" __

sec. a' sec. a" sec. a!"

And if the weight of the arch from the crown to any joint is

known, the thrust is given by the equation

sm. a

wherein a and t relate to any joint indifferently; and w
denotes the weight of the arch, from the crown to that

joint.

The thrust perpendicular to a joint, multiplied by the

cosine, or divided by the secant of the inchnation of that

joint to the vertical, is the horizontal thrust : and as the

thrusts perpendicular to the joints vary as those secants, the

horizontal thrust is the same throughout the entire system

;
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and, therefore, equal to the thrust at the crown. Its value

is given by the equation

,
, ,

COS. a IV
n.t zz. f.cos.a := w. —. =z .

sin. a tan. a

The horizontal thrust is therefore equal to the weight of

the arch, taken from the crown to the joint inclined to the

vertical in an angle of 45°.

All this is agreeable to what has been found relative to

the funicular polygon or catenary ; the horizontal elevations

of the cord, in its several parts, being the inclinations of the

perpendiculars on the cord to the vertical.

6. On these principles the curve of the extrados might

be assigned, when that of the intrados is given, together

with the depth of the work on the crown ; and vice versa.

But the application of these principles to practice is some-

what precarious, owing to the general uncertainty of the real

conditions of the problem to be solved. The three following

are given as extreme cases, of which all others are more or

less compounded.

7. Let it be proposed to find the extrados ; the voussoirs

extending to this line, i. e, filling the space between the

upper and lower curves.

The joints may be supposed to be every where perpen-

dicular to the curve of the intrados ; and the voussoirs them-

selves indefinitely thin wedges ; in which case, their faces

shall converge to the centres of curvature, as represented in

(Fig. 107.), where o, o', are centres of curvature; the angles

at those points being indefinitely small and equal.

Putting w for the weight of the arch, measured from any

joint to the crown, as before, and B for the angle made by

the same joint with the vertical, we shall have

d.w d.tan.6 „„ ,,.

7^- = ^--^^=^^-^^^-^- ^'^

Moreover, if r is put for the radius of curvature at any point
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I, of the intrados ; and I for the distance of the extrados

from the centre of curvature, we shall have the sector

r'^.M , ^ r-.iie
OIK — —-— , and the sector ogh = —-:—

.

2 2

and the vousson* ighk — ^^ —-^— . wherefore,

P - r"" = Asec.^e.

omitting the multiplication by 2, as a is a constant quantity

as yet to be determined.

At the crown, sec. dz^l. wherefore, putting I' and r for

the analogous quantities belonging to this point, we have

A-P- r\

and therefore,

giving

P zz r^ + {P - O sec.20. (2)

If ^ denotes the perpendicular from the extremity of the

line I, upon the horizontal line drawn through the centre of

curvature, we shall have

whereby

f. sec.2 = r^ + {P- i''^)sec.W.

or,

^^ =^e + ('^-'")-

which, for — 90°. is

7f = P-r'\

shewing, that when the curve springs at right angles from a

horizontal plane, it has an asymptote parallel to that plane,

at a distance equal to Vp— r''^, below which it does not

descend.

If the curve of the intrados is a circle, r' = r. and equa-
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tion (2) may receive this form,

/2 = r- + (r- r") tan.'-^e.

In flat arciies, such as are formed of brickwork over the

windows of dweUing houses, the joints all converge to a

common centre ; and therefore, the differences of the tan-

gents are as the breadths of the voussoirs themselves, mea-

sured either on the upper or lower edges. Accordingly,

the weights of the voussoirs being proportional to their

breadths, the vertical heights must be equal, i. e. the upper

line of the arch must be also right.

The extreme joints, at the angles of the opening, are

usually inclined to each other in an angle of 60° ; therefore,

the distance from the angles to the centre, is equal to the

v/idth of the opening; and this, for windows, is generally

about five feet. Accordingly, the circle passing through

the angles, and perpendicular to the joints, rises above the

reveal, by a space equal to 5^.vers.sin.30°, which is some-

what more than 8 inches ; and the line of pressure shall not

be contained within the voussoirs, unless they are at least

equal to this in depth.

8. Let the voussoirs be supposed to be of evanescent

depth, i. e. let the series of wedges be reduced to a line,

which is the curve of the intrados ; and let the pressure of

the incumbent materials be vertical.

This is the supposition on which the theory of the

arch is commonly founded. It differs most widely from

the cases which present themselves to the engineer : yet

the conclusions, derived from this supposition, may afford

him some elements for his calculations, in what relates to the

pressures of the loose materials, with which the arch is fre-

quently loaded. For this reason it is here briefly developed.

Let s be the arch measured from any point to the crown

;

ds shall be its element: and having d.B zz -^. equation (1)

may be changed into
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^"-=i.sec.'9. (3)
d.s r

Moreover, taking the span at the abutments for the axis of

Xi we shall have

ds= dx. sec. Q.

Wlierefore,

d.iv A
3/j

-7— = -. sec.'e'. (4)
d.x r

If h is put for the height of the work, i. e. for the vertical

distance between the intrados and extrados, we have

d.io = h.dx. and h zz -. sec.'^O.
r

To find the value of A, we have at the crown, sec. 0=1.
Wherefore, putting // for the height of the work, and r' for

the radius of curvature at this point, we shall have, for the

same point,

h' = -
. and a = h'.r'.

r'

Using this value of a, the equation is

h'r'
h = -— . sec.^'a. (5)

r

If the height of the extrados is required, above the hori-

zontal line on which the span is measured
;
putting ?/ for the

ordinate of the intrados, and y for that of the extrados for

the same abscissa, the equation will be

h'r'
Y=i/-\-h = 7/-\ . sec.''^. (6)

If the intrados is a semicircle, we have

r= r', and sec. = -.

y

whereby the value of h becomes
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and the equation of the extrados,

This curve may descend from tlie crown to a distance

greater or less, depending on the vahie of W ; but it has a

vertical asymptote at the extremity of the horizontal radius,

in approaching which, it rises to an indefinite height. The

same consequence follows from the supposition made in this

article, for every arch which springs from the horizon at

right angles.

To find the point where the curve of the extrados cuts

its horizontal tangent, we have only to make y = r -f-
^*' in

the last equation ; which then becomes,

' + ''' = 2/+ -^-

and this gives the value of //, the depth of work at the crown,

for any proposed extent of horizontal road way.

Thus, for y — -^, i. e. for an arch of 120°, the equation

gives /* = —r.^ 14

To find the curve of the extrados, that of the intrados

being a semiellipse having the lesser axis vertical.

Let a be the greater, and b the lesser semiaxis. Then,

The radius of curvature varies as the cube of the normal,

which is

y sec. 0. i. e. r: ~j- :: y^.sec^O : b^,

which gives
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Substituting these values of r' and r, in equation (5,) it is

h-
y'

Were the greater semiaxis vertical, the equation would

be

h-
f

The expressions, in both cases, being similar to that already

obtained for the circular arch.

9. The depth of the voussoirs being still supposed eva-

nescent, if the curve of the intrados were loaded with a fluid,

the perpendicular pressures on the equal elements of the

curve would be as the vertical heights of the fluid; and,

therefore, the distances of the several points of the intrados

below the fluid surface would be, every where, reciprocally

proportional to the radii of curvature, (Sect. VIII. Art. 6.)

And from this principle the intrados can be determined by

two successive integrations.

10. The principle of equilibration in a dome, except in

what relates to the horizontal thrusts, is contained in equa-

tion (3), viz.

dlG A g^
-J-

— -.sec^'t/.
as r

To apply this principle, let yABC, (Fig. 108.) be a portion

included between two planes intersecting at the axis to, at an

indefinitely small angle ; and let this portion be supposed to

be insulated, i. e. supported merely at the two extremities,

viz. at V, by the thrust of the equal and opposite portion

;

and at the lower surface abc, by the reaction of the work

from which it springs.

Let ahcfed be an element, whose upper and lower sur-

faces are perpendicular to the interior surface of the dome.

p '^
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The weight of this element is proportional to its solid con-

tent, i. e. to the continued product of its three linear dimen-

sions. Wherefore, putting t, for hc\ ds, for af\ and x, the

distance from the axis, for ah, to which it is proportional

;

we shall have

c c
t,x.ds =. -. sec.'^O.ds. or, / = . sec.W.

r T.x

At the crown, x is cypher ; and at the base, sec. is infi-

nite : wherefore, at the crown and at the base the thickness

is infinite, unless r is also infinite at those points.

If the dome is a segment of a sphere, r is constant ; and

sec.0 is - ; ?/ being the ordinate on the horizontal diameter

of the sphere. Wherefore,

c.r
t- 2-

The thickness Ms a minimum, when x.ij^ is a maximum,

i. e. when x -zz——. which corresponds to a distance from

the summit of 36 degrees, nearly.

11. From the thickness required at the top, it appears

that an equilibrated arch consisting of two sectors of a dome,

meeting at their highest points, cannot be constructed, un-

less by making the curvature at the highest point infinitely

small : and it might be supposed, that the same limitations

belong to a dome consisting of apposited sectors. But in a

dome there are other means of security, arising from the

thrusts in each horizontal course. The nature of these ho-

rizontal thrusts will be understood, by conceiving the dome

to be open at the top. The opening being a horizontal

circle, the highest course is an arch, and the tendency of

any part to fall inwards, being equable throughout, is effec-

tually counteracted by the mutual pressures of the parts.

Moreover, whilst the parts of each course are prevented
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from falling inwards on the principle of the arch, the inward

pressures, whilst permitted to subsist, are fitted to resist any

accidental violence tending to push them outwards ; and

being of the nature of compressing forces, to bind all toge-

ther into one compact mass.

Such is the advantage to be derived from the inward

pressures in the horizontal courses. But in a dome con-

sisting of equilibrated sectors, these sectors being merely

apposited, do not press against each other. The pressures

inward, in each horizontal course, are therefore counter-

balanced by the thrusts from above and below. Accord-

ingly, a dome consisting of such sectors, having no such

security against any violence tending to push any part out-

wards, is the weakest of all domes, which can be made to

stand independently of the adventitious aid of hoops, cramps,

cement, and friction.

In a dome which swells outwardly beyond that composed

of equilibrated arches, not only is the inward pressure in

the horizontal courses removed by the thrusts directed

from above and below, but there is moreover a tendency

to fly outwards ; and as there remains nothing by which

this is resisted, the dome must necessarily fall, by bursting

outwards.

But in a dome, which falls within that composed of equi-

librated sectors, the tendency inward in the parts of the

horizontal courses is never fully removed ; and in a structure

of this kind, outwardly concave, this tendency is even in-

ci'eased by the jjressures from above and below : for which

reason, such domes are much stronger than those consisting

of equilibrated sectors.

From hence it would appear, that a convex dome may

be strengthened by removing part of the crown : for the out-

ward thrusts from above and below are thereby diminished

;

whilst the upper course, by the tendency of its parts inward,

constitutes an arch which serves as an abutment for the
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portions of the sectors beneath. A dome open at top may,

therefore, carry a cupola or lantern
;
provided that the

weight of the superstructure does not exceed that by which

the opening should be filled up, to render it a dome of

equihbration.

It is true, that the tendency to burst outwards, may be

counteracted in a dome of any figure, by hooping, &c. and

the horizontal thrusts, moreover, taken from the walls of

the building over which it rises, by the same means. \Mien

this method is not taken, the massiveness of the walls must

be suited to the thrust they have to sustain : and it appears

from Art. 5. that, in an equilibrated dome, this is equal to

the weight of a portion of the dome, measured from the

summit to the course, whose upper surface is inchned to the

vertical in an angle of 45°.
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SECTION X.

OF STRENGTH AND STRAINS, DIRECT AND TRANSVERSE ; AND OF

THE PRINCIPLES OF FRAME WORK.

1. When a soft body, of a uniform substance, is com-

pressed by a force, equally applied to every part of its sur-

face, it is not broken. Hence it follows, that fracture is pro-

duced by a compressing force, in consequence of the in-

equality of its actions, or of the forces of cohesion, by which

it is resisted.

Bodies are crushed by the lateral detrusion of the parts

from their places : and this is variously effected, as the bo-

dies are malleable or rigid, of a uniform, fibrous, or granular

structure.

If the body is malleable or ductile, it is easily conceived,

that of the particles situated in the direction of the com-

pressing force, some shall be detruded, laterally, from be-

tween others, without breaking the continuity of the body

:

and if this operation of the compressing force were equable

throughout, the length of the body would be diminished,

and the breadth uniformly increased. But this is not the

case ; for if the compressing force is evenly applied to the

circular ends of a column of such a substance, the detrusion

or swell shall be greatest where tlie resistance is least, /. e.

at the ends, as is represented by the toruses of architectural

columns ; the force of resistance being there least, in relation

to the compressing force. If the body is rigid, and still

homogeneous, it shall begin to fail, by splintering off in the

same parts.

To find the angle of the splinter, let ae^be a pillar of a
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homogeneous substance, loaded with a weight w, (Fig. 109.)

and let aoh be the angle of the fracture, to be now deter-

mined. The cohesive force in the section ob, or od, varies

as the lengths of these lines, i. e. inversely as the cosine of

the angle aob, or cod, o being the middle point of the line ac.

The incumbent weight, w, is a force applied in the vertical

;

and, therefore, its energy in forcing the portion aob along

the inclined plane ob, is proportional to the sine of the same

angle : wherefore, the resistance divided by that energy, va-

ries inversely as the product of the sine and cosine of the

same anffle : i. e. as —:—-:

—

—. and as the body will fail
*= sm.2aob ^

where the resistance divided by the energy of the weight is

a minimum, it will fail where sin. 2aob is a maximum, i. e. at

an angle ao6= 45". Wherefore, ^0^=90°. and a pillar of

iron is said to fail in this way, under enormous pressure

;

the surfaces of fracture making a right angle with each other,

as represented in the figure.

A fibrous substance will not always follow this rule \ for

if the direction of the compressing force is parallel to that

of the fibres, and these slightly agglutinated, the fibres may

give way by bulging in the middle rather than at the ends,

where the lateral motions are resisted by enormous friction.

In this case the outer fibres, having least support against

the force by which they are bent, will be most detruded,

whilst those nearer the axis are crippled, as is represented

in (Fig. 110). This change continues until the mutual co-

hesion among the fibres is broken, and then the body is

crushed. A pillar of such material under a compressing

force, is greatly strengthened by hooping.

In a uniform substance, the strength to resist compres-

sion is generally far greater than the strength to support an

extending force. But in fibrous substances, it is otherwise :

for the extending force, having the effect of uniting the

fibres, cannot break the cohesion without overcoming their
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united strength. However, in the relations of their strength

to bear a load suspended or incumbent, there is the greatest

diversity. Thus, a beam of oak will suspend twice as much

as an equal beam of fir ; whilst it will support but one-half.

The cause of this diversity is probably to be found in the

curvature of the fibres of the oak, which renders it less fit

to support than to suspend.

2. But the cohesive forces, which constitute the strength

of a beam or rod, are more easily surmounted by a force

applied transversely ; especially, if the straining force is ap-

plied at a considerable distance from the point of fracture.

This is plainly to be attributed to the advantage of leverage

then given to the straining force ; as also, perhaps, to the

circumstance that the full force of cohesion in the section of

fracture is not at once encountered by it.

The theory of transverse strains is not as yet well esta-

blished, owing to the difficulty of ascertaining the physical

conditions of the bodies subjected to those actions. Galileo

was the first who attempted to bring this matter within the

province of theoretic mechanics ; and little has been added

to what he had delivered on the subject. Some improve-

ments, however, have been made in this theory, by Mari-

otte, Varignon, and Leibnitz.

The operation of a transverse strain is to separate two

surfaces, before in contact, by an angular motion round a cer-

tain line, which then becomes an axle or fulcrum ; and it was

supposed by Galileo, that this line was in that surface which

is rendered concave by the action of the straining force. It

was also supposed by him, that the force by which the

motion round this line is resisted, is the same in all the fibres

by which the divided surfaces had been connected. On this

supposition, the sum of the forces of the fibres might be

supposed to be applied at the centre of gravity of the trans-

verse section, which is the surface of fracture ; and the le-

verage of this force of resistance would, therefore, be the
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distance of this point from the axis of rotation. According

to this account, the moment of the resistances in a rectan-

gular beam, would be the sum of the cohesive forces of the

fibres in the section of fracture, multiplied by half the depth

of the beam, i. e. f denoting the cohesive strength in a

superficial unit of the transverse section ; b the breadth

;

and h the depth of the beam ; the sum of the cohesive forces

would hef.bJi. and its moment —^—

.

Hence it appears, that the strength of a rectangular

beam to resist a transverse strain, varies as the breadth

multiplied by the square of the depth : for which reason,

such a beam placed horizontally is stronger to resist a verti-

cal strain when its narrow face is uppermost, than when

it is placed with its broader surface in the same position,

in the inverse ratio of these dimensions : so that if the

breadth is double of the thickness, the strength in the two

positions will be as two to one.

The strongest rectangular beam that can be cut out of a

given cylinder is that wherein b.Ji^ is a maximum. This

gives

2b.h.dh + Ir.db = 0.

or,

2b.dh -\- h.d.b = 0.

Also, r being the radius of the cylinder, we have

b'' + h^ = 4^r\

whence

b.db + h,dh = 0.

and db being exterminated by these two equations, we have

/i' = 2b\ i. e. W — 4r2.

whence we derive the following simple construction.

Let AsrBo be the circular section of the cyUnder ; and

AB its diameter, (Fig. HI.) Let this diameter be divided
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into three equal parts by the points m and n : then erecting

the perpendiculars m%, no, and drawing the lines ^a, ^b, oa,

OB, we have the rectangular section required.

o. The supposition relative to the equality of the forces

exerted by the fibres in the section of fracture, was first

contested by Leibnitz. It was properly observed by him,

that as all beams v^ere more or less deflected before the

instant of fracture, the fibres could not be equally strained

;

and that as the forces exerted are known to be proportional

to the extensions, those forces of resistance in the several

fibres must be proportional to their distances from the ful-

crum, or centre of angular motion. Thus, let al), ac, be

two lines drawn in the two faces separated by fracture,

(Fig. 112.) those lines being perpendicular to the axis of ro-

tation passing through the point a ; we may then confine

our attention to the strains in the triangular surface abc.

The strength of a fibre to resist a longitudinal pull be-

ing denoted, as before, by/, this will be the force exerted

by the fibre 6c, when about to break : and that of any other

fibre will be less in the ratio of its distance from a to the

depth of the beam. Accordingly, the sum of the forces of

resistance, exerted at the moment of fracture, wovdd be only

PI 1
'

, instead oi f.b.h. which would have been the measure

of the strength if all the fibres acted alike, according to the

Galilean hypothesis. Moreover, the sum of these strains

would be applied at the centre of gravity of the triangle abc.

whose distance from a, the centre of motion, is fA. and ac-

cordingly, the moment of the forces of resistance would be

, , f.b.h'' .
, ^f.b.P

measured by -—;— . mstead oi '

—

-—

.

^ 3 2

It is be observed, that the conclusions obtained from the

Galilean hypothesis as to the comparative strength of a rec-

tangular beam, in different positions, would have equally
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followed from this of Leibnitz ; but this agreement does not

extend to all figures.

Thus, if a triangular beam, with its end fixed in a wall,

were to support a weight suspended from the other end ; ac-

cording to the Galilean hypothesis, the weight which it would

support, with its base uppermost, would be twice as great as

that which it would support with its edge uppermost; the

distances of the centre of gravity of the triangular section

from the fulcrum being, in the one case fA, and in the other

-. According to the hypothesis of Leibnitz, the beam, with
o

the base of the triangle uppermost, would have a force of
/" 7 7

-

resistance whose moment is ^^-^— . i. e. the area of the tri-
4

angular section being -^ , the moment of the resistance

would be that of the full cohesive force of all the fibres in

this section, acting at the distance - from the fulcrum.

Whilst the moment of resistance in the same beam having

the edge uppermost, would be " '

'

-. or that of the direct

cohesive strength of all the fibres in the section, acting at

the distance -, from the fulcrum. So that according to this
o °

hypothesis, the beam in the former position would be thrice

as strong as in the latter.

This diversity, in the conclusions as to the relative

strength of a triangular beam, in these two positions, might

seem to offer a test of the truth of the hypotheses from

whence they follow. But there are other effects of inflec-

tion, which are not to be overlooked.

4. James Bernouilli was the first who proposed to consi-

der the compression produced in the concave surface. For,
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as he remarked, the whole of the fibres m the section of

fracture had not been in a state of tension during the ope-

ration ; but whilst on one side they were in this state, those

on the other side were compressed. 'These portions of the

sections of fracture are separated by a line transverse to the

length of the beam ; in which line, the fibres are neither

compressed nor extended ; and this line is, therefore, to be

regarded as the real axis of rotation. The moment of the

forces which resist extension on one side of this line, must

be equal to the moment of those which resist compression

on the other ; for it is this equality of the moments which

determines the position of the neutral axis. Were the mo-

ment of the resistance to compression the lesser of the two,

the body would yield by compression, whereby the neutral

axis would be further removed from the concave side, and

this motion would continue until the equality is restored

:

and we are to reason in the same way, if the moment of the

resistances to extension were the lesser. Hence it follows,

that the entire of the moment of resistance is twice that of

the forces which resist extension ; and therefore, that the

more compressible the body, the less the force of resistance

which it is capable of opposing to a transverse strain. For

the moment of this force is twice the moment of the forces

which resist extension ; and this latter moment varies as the

square of the distance of the convex surface from the axis

of rotation, which is the neutral axis. Hence it is that a

beam of soft timber is much strengthened by a cut on the

side, which, by yielding, would become concave, the cut

being filled with a wedge of hard wood. For the fulcrum,

or axis of rotation, is thereby removed to the surface, and

what is lost by the absence of the forces which resist com-

pression, is more than supplied by the increased leverage

given to the forces which resist extension. Thus, if the

neutral axis is supposed to be in the middle of the section of

fracture, and the saw-cut to be half the depth of the beam,
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the distance of the centre of gravity of the uncut half, from

the axis of rotation, becomes thrice as great, and therefore,

the moment of the forces, excited by extension, is increased

in the same ratio : wherefore, according to the Gahlean

hypothesis of the equahty of the forces excited in the fibres,

the moment of resistance would be increased in the ratio of

3:2.

To see what would be the increase of strength according

to the hypothesis of Leibnitz, we have only to integrate the

expressiony -7 a;^c?^ from a;= - to x= 7i, and this would give
ft /V

J^f.b.h^ for the moment of the resisting force; whereas the

sum of the moments of the forces resisting extension and

compression before the introduction of the wedge is -^:^f.bJi\

so that according to this hypothesis, the strength would be

increased in the ratio of 3^ : 2. This is on the supposition,

that the compression can be altogether prevented in this

way. But, as this is only in part prevented, we are not to

expect an increase of strength to the amount of what is here

inferred.

5. Two important changes in the theory, as delivered by

Galileo, have been already noticed ; and it does not appear

that, with these emendations, the theory comprises all the

physical conditions which influence the result. It has been

judiciously remarked by Mr. Barlow, that the fibres do not

break immediately after being strained to the utmost of their

strength ; but that after this, the force of resistance still con-

tinues to act, though with decreasing energy ; whilst other

fibres, nearer to the axis of rotation, exert their greatest

force : and, accordingly, that fracture does not occur until

the aggregate of the moments of the forces of resistance

shall have passed its maximum. But when this occurs, i. e.

how far the exterior fibre is stretched, before that the whole

begins to give way, cannot possibly be known, unless the law

of the decreasing energy of a fibre, after exerting its greatest
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force, were ascertained. To this may be added another ob-

servation, which is a consequence of the preceding ; that af-

ter the exterior fibres on either side have exerted their maxi-

mum of force, whether in resisting extension or compression,

the neutral axis must recede from that towards the other

side, where the fibres have not as yet been strained or com-

pressed to the Hmit of their strength. This motion of the

neutral axis will be towards the side, to which it had been

originally nearest, the weaker forces being those first over-

come. But it does not follow, that the beam shall be broken

by the weight which weakens the strength on one side only,

for this may occur before that the fibres at the other side

have arrived at the limit of the forces which they are capable

of exerting. Thus a beam is often crippled at one side, by

a force which will not break it. These observations have

been made for the purpose of showing that it is in vain to

expect a complete theory, or one that shall perfectly accord

with experiment, until the mechanical process towards frac-

ture is better understood. In the mean time, the theory, as

far as it has been carried, suggests many useful hints to the

practical mechanic. Thus it was shown, why a beam of a

compressible substance is strengthened by the insertion of a

hard wedge into a cut made in the concave side ; and the

same theory suggests the best methods of fishing and

splicing. It appears also, that the strength of a joist may

be increased, whilst the material is economized, by in-

creasing the depth in relation to the breadth : and that a si-

milar advantage may be attained in the construction of metal

pillars, by casting them hollow. For a hollow cylinder is

stronger than a solid one of the same substance ; the centre

of forces opposed to fracture, being further removed from

the fulcrum in the hollow than in the solid cylinder, whilst

the surface of fracture is the same in both. There is how-

ever a limit to the extent to which this principle should be

carried : for as all the parts should act together, they should
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be left sufficiently strong to resist such impressions as would

otherwise cause a partial violation of figure.

All this is seen exemplified in the woi'ks of nature, where

lightness is not less requisite than strength ; as in the bones

of most land animals, the quills of birds, the stems of reeds

and grasses : and suitably to the purposes of the Allwise

Contriver, we find that the substances of such bodies are of

a more than ordinary degree of hardness and tenacity.

On the whole, it is to be observed, that the equilibrium

between the straining and resisting forces continues until the

moment of fracture. For as the former is increased, the re-

sisting forces are also more intensely excited until their mo-

ment becomes a maximum ; and it is only when the straining

force is increased beyond this limit, that the equilibrium is

violated.

6. Hitherto the strength of materials to resist fracture

has been considered, chiefly according to the different

modes in which this strength may be supposed to be exerted:

but it is no less necessary to form an estimate of the efficacy

of the straining forces, according to the different modes in

which they may be applied. In treating of this part of the

subject, the energy of the resisting forces may be regarded

as unvaried.

If a beam, having one end fixed in a wall, carries a

weight on the other end, the whole may be regarded as a

bent lever of the first kind : the fulcrum being: at the axis of

rotation, in the plane of the surface in which the beam would

break when overloaded. The arms are the distances from

this fulcrum to the point at which the weight is applied on

the one hand, and to the centre of the resisting forces on the

other. And in the case of equilibrium, these contending

forces are reciprocally as the lengths of the arms by which

they act; or, more properly, they are reciprocally as the

perpendiculars let fall from the axis of rotation on the direc-

tions of the forces. In what follows, the flexure of the beam
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being supposed to be inconsiderable, the length of the arm

shall be taken as the measure of leverage.

Whilst the beam is secured at one end, the energy of a

weight, w, to produce a strain in a transverse section at the

distance x, from the weight, is w.x. For the equilibrium

subsisting between the straining force, and that by which it

is resisted in any section, will not be disturbed if the beam

is fixed at that section : the weight will then act, by the arm

of a rigid lever, against the resistances in the same section.

The energy of the weight, being expressed as above, is

greatest in the section which coincides with the plane of the

wall : and putting I for the length of the beam, or the dis-

tance of the weight from the surface of the wall; its value at

that distance is iv.l.

7. If a beam, supported loosely at its two ends by props,

carries a weight at any intermediate point, the strain on the

section made at the part where the weight is applied, is

evidently the same as if it were there placed on a wall, and

loaded at each end with a weight equal to the reaction of

the prop which supports that end. Therefore, to find the

energy of the strain, we have only to find the pressure on

each of the props, and to multiply it into the distance of that

prop from the weight. Accordingly, p, p denoting the

pressures on the props; a and b (Fig. 113.) d, d' their dis-

tances from the weight at c, we have

w.d

and for the moment of the straining force,

iv.d'.d

I

For any other point between a and c, whose distance
7/

from a is x, the moment of the straining force is
' "^.

This moment is, therefore, greatest in the section where the

Q
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weight is applied. And if the place of the weight is varied,

it is greatest when the weight is placed at the middle point

w I

of the beam, its value being then -^. The reaction of the

prop B has the same effect ; wherefore, -—, the energy of

the weight, applied at the middle of a beam loosely sup-

ported, is equal to that of the same weight applied at the

end of a beam of one-half of the length, the other end being

secured. Or, it is the same as that of one-half of the weight

ajDplied at the end of the entire beam, the other end being

fixed. Whence it follows, that a beam supported loosely

on props, would carry on its middle point, twice the weight

which it could support at one end, the other end being

fixed : and it may, therefore, be said to be twice as strong

when treated in the one way, as it would be in the other.

8. If a beam were secured at both ends, it becomes still

stronger to support a weight in the middle, in the ratio of

2:1. For the weight required to produce the strain at the

middle, and those at the two ends, is equal to the sum of

those which would be requisite to produce them separately,

i. e. it is the sum of the weight, which would produce the

strain in the middle, the ends being loosely supported, and

of the two weights which would produce the strains at the

wall, the beam being sawn through the middle. Now if the

three strains were equal, the moment of the weights which

by acting on the half lengths produce those at the wall would

be, each of them, equal to — ; and, therefore, to produce

the triple fracture, the moment of the weight in the middle
n

should be - z/;^ . But the deflections at the ends near the

wall are, each of them, only half of that at the middle.

Wherefore, the weight supported by the sum of the re-

sistances at the ends, is only equal to the weight supporteol

by the resistance of the middle section. Consequently, by
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fixing the ends of the beam in the wall, the weight which it

will support at the middle is doubled.

If equal weights are uniformly distributed over a beam

fixed at one end, the strain on that end shall be half of what

it would have been, had the sum of the weights been applied

at the remote end.

For, let div be the weight resting on dx, a portion of the

length, we shall have

w.dx
d.w zz

I

and putting x for its distance from the fixed end, the energy

with which it acts on that end is

w.x.dx

I

and the sum of these moments, or

w C 1 w.x^.

which needs no correction. This, for x:=zl, is — . which

is half the moment of the weight tv, when applied at the

outer end.

If the beam is supported loosely on its ends, the strain

at the middle point, on the same supposition of the equal

distribution of the load, is the half of what it would have

been, had the sum of the weights been applied at that

point.

For the force on dx is —
j
— ; and its moment to pro-

V

duce fracture at o, the middle point, is had by multiplying

... . T n TT71 r • • tv.x.dx
this mto X, its distance Irom o. VVhereiore, it is

j
—

:

and the sum of these from o to a, is -^ : and the same for
o

the weights between o and b. Accordingly, the whole mo-

Q 2
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ment at o, of the weight thus uniformly distributed is -^

:

which is half the strain produced by w placed at that point.

Since the energy of the uniformly distributed weights,

to produce fracture, at the middle point of the beam when

loosely supported, is half of that, which would belong to

those weights if concentred at that point ; and since, when

the beam is fixed at the ends and sawn in the middle, the

energy of the same weights to produce fracture at the fixed

ends, is one-half of that which would have been exerted,

had they been concentred at the same point ; it follows, that

the energy to produce both of these effects conjointly, must

be one-half of that, with which the weights would have

acted, if concentred at the middle point, i. e. if a beam

is secured at both ends, and uniformly loaded, it will bear

double the weight which it could have borne at its middle

point.

Therefore a beam, whether fixed at one end or loosely

supported at both ends, or fixed at those points, is capable

of bearing twice the load, uniformly distributed, that it

could have borne if placed altogether at the unsupported

end of the beam in the first case, or at the middle in each

of the two other cases ; i. e. in all cases, the strength of

the beam is doubled by the uniform distribution of the

load.

9. If the force by which a beam is in danger of breaking

is its own weight, the same theorems will apply. And it is

worthy of note, that as the energy of the uniformly distri-

buted weights varies as w.l, and that of the force of resis-

tance as the breadth of the beam, multiplied by the square

of its depth, i. e. as h.d^. so xiw is the limit of the weight

which it will carry in this manner, it shall vary as -^—

.

which, for similar beams, is as P-. i. e. the strength of
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similar beams, estimated by the load which they will carry

in this manner, varies as the squares of their lengths.

But though the strength of a beam to support an extra-

neous load, increases as the square of its linear dimensions,

those dimensions being increased in the same proportion,

yet its strength to support its own weight, so far from being

increased, is diminished. The reason is, obviously, that

its own weight increases as the cube ; and the moment of

that weight, as the fourth power of its linear dimensions, and

therefore, faster than its strength to support it. Thus if

there are two similar beams, whose lengths are / and /', se-

cured each at one end in a wall: their weights are as l^ and

/'^, and the energies of those weights to produce fracture,

as ^^, l'^, whereas, the energies of the forces of resistance

are as h.tP : h'.d"^, i. e. as P'.V^.

If the weight is known which a beam, fixed at one end,

will just carry at the other end without breaking, we may
find the length of a similar beam which shall just support its

own weight.

For, let I be the length of the smaller beam, m its mass,

and w the weight which it will just carry at the end. And
designating the length and mass of the larger beam by the

capitals, the energies of their loads are

(1 + ..)/. and|,L.

And the energies of the forces of resistance are as P^ and

L^. And the former must be proportional to the latter, or

m -\- 2w _ M

Moreover,

and therefore,

M '.m:: L^-.f

M = —rr
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which value of m, being substituted in the preceding equa-

tion, it becomes

(m -\-2w) I— m. L.

giving

, 2w.l
-LZZ.I -^ .

m

Hence it appears, that of all similar beams of the same

material, and fixed in the same manner, there is but one

which can barely support itself without breaking. A beam

larger than that here estimated, will be broken by its own

weight. And hence also it appears, that small animals are

much stronger than large ones to carry their own weights

;

for which reason, they are far more active. Accordingly,

a fly will carry ten times its own weight, perhaps with more

facility than a horse can carry a weight merely equal to his

own. There is, therefore, a limit to the size of animals and

plants, at which they would be oppressed by their own

weight, and fall to pieces. This is a natural limit to the

magnitude of trees and land animals, which is further re-

duced, by the necessity of leaving them strength for other

purposes, beyond what would be required for the support

of their own weights. This limit is not so much straitened

for sea animals, the weight of whose bodies is in a great

measure supported, and whose strength to bear it much

assisted by the weight and compression of the medium

in which they live. Accordingly, we find that some of

these are much larger than any of the inhabitants of the

dry land.

The same principle which limits the size of the produc-

tions of nature, is equally applicable to the structures of art.

Thus, what appears strong in the model, may be very de-

ficient in strength when executed: and this must be allowed

for by engineers and architects, who would, otherwise, make

the most ruinous mistakes.
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10. Such are the principles on which the strength of

beams is to be computed, with regard to the loads they are

intended to bear. In treating of the equilibrium of struc-

tures consisting of such materials, these strains were not

considered. The component parts were supposed to be

rigid and unbending : in which case, the loads supported by

them might be supposed to be transferred to the angles :

and the subject of investigation was the equilibrium of the

longitudinal thrusts. When this equilibrium is secured, a

great object is attained : the stability of the structure being

then easily provided for. But this is not sufficient ; for the

parts of the structure are strained transversely by their own

weights, and by the loads they carry: and it has been shewn,

that the strength of beams to support such strains is far less

than to support a longitudinal pull or thrust ; the absolute

force of resistance being much less in the former case,

and acting ordinarily at a great mechanical disadvantage

in relation to the straining force. Accordingly, after the

equihbration of the component parts of a structure, the

next object, especially in carpentry, is to convert the trans-

verse strains into longitudinal pulls or thrusts. How this

is to be accomplished may appear by one or two familiar

examples.

Let AB be a horizontal beam attached to an upright at

B, destined to support a weight w, appended at a, (Fig. 114).

Putting I for ab, the measure of the energy of w, to strain

the beam at b, is iv.l : and unless the beam is very strong,

and well secured at b, it will be broken by an inconsiderable

weight, or forced out of its birth at b. This is prevented

by changing the straining force to a thrust in the direction

of AB : which is accomplished by combining with the force

w, another force, such that the resultant of the two shall be

directed according to ab : and this being effected, the po-

sition of the beam is secured, though it should be connected

with the upright only by a hinge at b. Let ai\i be a cord
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attached to the beam at a, and to the upright at m ; if this is

inextensible, and sufficiently strong, it must necessarily sup-

ply the force requisite to change the vertical strain into a

horizontal thrust : for the point a cannot descend without

stretching or breaking the cord, and if this does not occur,

the three forces acting at a must be in equilibrio. These

forces are, 1st, the weight w, acting in the vertical ; 2d, the

reaction of the cord in the direction am ; and 3d, the reac-

tion of the upright in the direction ba. Accordingly, the

two first must compound a force equal and opposite to the

last, i. e. a force acting in the direction ab. In this case,

the resultant in the direction of ab is a compressing force

;

and the piece ab is called a strut. We have, therefore, only

to connect the point a, by a tie, to a point in the upright,

above b, and the lateral strain on ab shall be converted into

a longitudinal compression.

The quantity of the strain endured by the cord, and of

the thrust against the upright at b, are compared with the

weight IV, by the triangle amb, whose sides are in the direc-

tions of these forces. Thus, putting s for the strain on the

cord, and t for the thrust against the upright, we have

T z::

sm.ang.A tan. ang. a

Similarly, by a force acting in the direction am', the

transverse strain may be converted into a longitudinal pull.

This force may be supplied by a brace an, which, if it is

incompressible, will prevent the point a from descending.

The forces acting at a are then in equilibrio, i. e. the weight

tv, and the reaction of the brace in the direction of nam',

will be a compound force in the direction of ba, which, if

the hinge or fastening at b is sufficiently strong, will be

counteracted by the reaction of that point. The relative

magnitudes of the three forces are determined as in the for-

mer case.
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In the same way a beam may be strengthened, by what,

at first view, might appear to be an addition to its load.

Thus, let the beam be ab, resting on supports at a and b,

(Fig. 115). This shall be greatly strengthened by the piece

DC, descending from its middle point, and connected by its

remote end c, with the extremities of the beam ab. For

the point d cannot descend without crushing the piece dc,

or breaking the connexions ac, bc. Therefore, if these

parts are sufficiently strong, the strain on the beam at d,

where it is most dangerous, is transferred to the points A

and B whei'e it is firmly supported. In this case, the con-

necting pieces ac, bc, serve to thrust the piece cd against

the middle of the beam : wherefore, this last is a strut, and

the two former ties ; for which reason, these may be inex-

tensible cords. In this manner, the transverse strains are

removed by ties and struts.

11. To take away the lateral thrusts from the walls of a

house, occasioned by the weights of the rafters and their in-

cumbent load, the heads of the rafters are connected by a

tie beam ; which, if it had no other office, needs not be

gross. But, commonly, it has a ceiling to support, and

perhaps a floor with all the furniture of an apartment. In

this case, the tie beam, miless supported, will be apt to

yield to the transverse strain, occasioned by its own weight

and that of the load it carries. This support is given to it

by a tie, or king post, connecting it in the middle with the

summit of the rafters. But the rafters also, if long, will

require support against the transverse strains, to which they

are subjected. This is supplied by braces, descending from

the middle of the rafters, and abutting against the lower

end of the king post, on which they are joggled.

In this way, the middle of each rafter is supported ; and

the load and its bearing being reduced each to one-half, the

strain upon the half rafter is reduced to one-fourth of that

on the entire rafter supported only at the ends. All this is
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exhibited in (Fig. 1 16.) where ab, ac are the rafters ; bc the

tie beam ; ad the king post ; and ed, fd the braces. This

is the most common kind of roof, and it is sufficient for all

ordinary purposes.

12. But in trusses and frame work of all kinds, besides

the equilibration of the longitudinal thrusts, and the re-

moval of the transverse strains, it is also requisite to provide

for the inviolability of the figure, against the various influ-

ences to which the work may be exposed. When this is

secured, all the parts shall act together as one solid mass ;

each contributing to support the strains on the rest. This

end is attained chiefly by resolving the whole into triangles.

For in such figures, whilst the lengths of the sides continue

unchanged, their relative positions must also be unchanged.

This is not the case in figures consisting of any greater

number of sides. For example, nothing could be worse

than a trapezium roof consisting only of three rafters and

a tie beam, such as that represented in (Fig. 117). For

though the thrusts are taken from the walls, by the tie beam,

and the points a and b thereby fixed, yet the angles being

changeable, the strain on each piece from its own load, and

also, the thrusts against it from the contiguous members,

are, consequently, changeable.

Were the middle points of the horizontal beams con-

nected together by the piece mn, (Fig. 1 1 8.) those beams

would be constrained to act together ; but the deflections to

which they are liable being in the same direction, little is

thereby gained, in proportion to the quantity of material

added. Were the middle points of the rafters connected

together by the piece op, the deflection in those parts

would be resisted somewhat more eflTectually, for should the

rafters bend, it must be in the same direction; but the

strains from their loads being both inwards, i. e. in opposite

directions, they would yield only by the difference of those

strains.
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By means of the two uprights, ce, df, the roof becomes

considerably stronger : (Fig. 119.) for the angles of the tri-

angles, ACE, BDF, are unchangeable as long as the distances

of their angular points remain unchanged. And so are also

the angles of the four-sided figure cefd, as long as the

lengths of its sides, and those of the lines ac, bd, are un-

changed. But the chief recommendation of this construc-

tion is the space cefd, which it allows for an apartment. For

the rafters ac, bd, the truss beam cd, and the tie beam ab,

are all liable to deflection from the transverse strains.

These deflections are effectually prevented by continuing

the rafters above the truss beam, so as to meet at a point

;

or should this roof be deemed too high, the pitch of the raf-

ters above the truss beam may be diminished, as represented

in (Fig. 120). For thereby a new fixed point is gained, by

means of which, the truss beam may be prevented from

bending by the king post hm. This gives another fixed

point, M, which may serve for abutments to the braces mn,

MP, by which the stiffness of the upper rafters is secured.

The triangle chd, being then a firm piece of frame work, c

and d are fixed points, from which the queen posts, ce, df,

may descend, to carry the tie beam ab. Two more fixed

points, E and f, are thus obtained, which serve as abutments

for the braces ei, fk, by which the rafters ac, bd are sup-

ported. The braces eg, fl may be added to counteract

the push of the queen posts, which might be occasioned by

the thrusts of the braces ie, kf. They also afford addi-

tional security against any change in the angles c and d
;

and also, further support to the truss beam cd.

A roof consisting of four rafters of this external form is

called a Mansard or kirb-roof.

13. Where firmness is the main object, the frame work

shoidd consist of triangles. For the angles being unchange-

able whilst the lengths of the sides are unchanged, the

figure cannot be violated except by the deflections of the
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beams : and the same angles afford the means of security

against these deflections, being so many fixed points, which

may serve for abutments to the braces, by which the trans-

verse strains are supported. But where it is particularly

desirable to gain internal space, the angles of a kirb-roof

may be secured by braces dividing each of the rafters into

three parts. In this way the sides of the polygon are dou-

bled, as represented in (Fig. 121). And by a continuance of

the same method, they may be further multiplied, until the

interior figure approaches to the form of a vault ; it may
then be lined so as to perfect that figure.

But a most ingenious method of framing a roof, without

encroaching considerably on the space within, is that pi-ac-

tised by the Normans, in what are called Gothic Buildings.

The construction is that represented in (Fig. 122.) where

BE, CF, DG, are pieces descending from the angles made by

the rafters, the ends of those pieces being connected with

the angles at each side. Thus each four-sided figure, as

ABCE, is fixed, being resolved into two triangles by its diago-

nal BE. The whole being treated in this manner, the rafter

AB cannot move independently of bc; nor bc without cd;

nor this last without de. All must, therefore, act together

in resisting a force applied to any one part. Each of the

braces, ea, ec, &c. is alternately a strut and a tie ; a strut in

upholding the angle from whence it proceeds ; and a tie in

holding up the piece descending from the neighbouring an-

gle, by which means that angle is supported. Thus, ce, cg

are struts, rising from the abutments e and g, to support the

angle c; and cg, ge are ties upholding the piece gd against

the angle d.

The same method is extended to support the rafters also

against the strains occasioned by their respective loads, and

this without encroaching so much on the space within ; sim-

ply by connecting the pieces be, cf, dg with the middle

points of the rafters, as represented in (Fig. 123). In this
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way the braces if, kf are struts abutting on f, and support-

ing the rafters cb, cd at their middle points i and k. And
the same pieces are ties pressing up the piece fc against the

angle c.

The architects who used these methods, instead of con-

cealing the roof by a ceiling, frequently exposed it to view,

ornamented with carved work : vain, perhaps of their skill

in supporting an enormous roof by that which, to a common
beholder, would seem an additional load, fitted only to hasten

its ruin.
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SECTION XL

OF THE ELASTIC CURVE.

1 . In what has been hitherto delivered relative to trans-

verse strains, the forces considered were those requisite to

produce or resist fracture ; but by a force less than this, a

beam or rod is sensibly inflected. Sometimes this change of

figure is permanent ; in which cases, the rod is said to have

taken a set : but often, also, it regains its primitive figure,

when released from the straining force, in which case, it is

said to be elastic ; and the force, by which it is brought back

to its primitive position, is called its elasticity.

When an elastic plate, fixed at one end, is bent by a force

applied at the other, the figure which it assumes is called the

elastic curve ; and the purpose in the present section is, to

point out the mode of investigating that figure.

Let OB be the plate fixed at o, (Fig. 124.) and let this be

bent into the curve ob', by a force p, acting at b', in the di-

rection b'g. The equilibrium at any point, m, shall not be

disturbed, by rendering the plate inflexible at every other

point. To conceive the nature of the action of the elastic

force, the curve formed by the convex surface of the plate

may be regarded as a polygon with an infinite number of

equal sides, mm, mm being two contiguous sides of this

polygon, the tendency of the elastic force at m, is to bring

the line mm to the same direction with urn by a circular

movement round a certain line in the section made at m,

perpendicular to the plane of the curve ; which line is, there-

fore, to be regarded as the axis of circular motion. This

tendency being counteracted by p, the straining force acting
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at b', it follows that these two forces are in equihbrio ; or

that their moments are equal. Wherefore, putting e for the

moment of the elastic force acting at m, and drawing the line

M« perpendicular to b'g the direction of the inflecting force,

we have

EZZPXMW. (1)

In deriving the equation of the curve from this funda-

mental proposition, we shall confine ourselves to the case of

a plate of uniform breadth and depth, in which the flexure

is inconsiderable. Moreover, as the inflecting force when

oblique, may always be conceived to be compounded of two

forces, of which one is perpendicular to the face of the plate,

and the other in the direction of its length, it will be suffi-

cient to consider these two cases apart, which is what is pro-

posed in the two following articles.

2. Let cIs be any element of the interior curve ; i. e. of

the curve formed by the concave surface of the plate, and

let ds' be the corresponding element of the exterior curve.

In the plate before inflection these were equal ; but after in-

flection ds' is greater than ds. Now ds', ds being regarded

as similar arcs of two concentric circles, whose radii are /, r,

we have the following proportion

:

ds' : ds : : r : r,

and

ds'—ds :ds:: r — r : r.

giving

ds —ds= . ds.

But r'—r is the thickness of the plate which is supposed to

be unvaried : wherefore ds'— ds which is the distention of

1

the elementary portion ds varies as -. i. e. inversely as the

radius of curvature. Now e varies as t//— J* multiplied by
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the breadth into the square of the depth, which in the case

now considered are constant: it therefore varies inversely as

the radius of curvature ; a fact which had been previously

established by experiment. Wherefore nrzzA, a constant

quantity. Accordingly, taking the point o for the origin,

the right line ob, or the length of the plate before inflection,

for the axis of ^, and the perpendicular oc for that of?/, and

putting x' for od, equation (1) becomes

v(x —x)=-.
r

If the flexure is small, x' may be deemed equal to ob ; which

being denoted by I the equation becomes

v(l—x)y— A.

This is brought to an equation between x and y, simply by

(dx^-\-ch/^)^
substituting for r its value, which is—;—jg . Where-° ax.cry

fore the differential equation of the curve will be

3

But

V[l—X) -^ = A.
ax.ay

{dx--^dy'')^ ' -'"2x1

dx.d^y

dx^
whose approximate value is -^- the flexure being inconside-

rable : in which case the equation becomes

f{1—X)-zj-= A.

or

v{l—x)dx-=.\.-~-.
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And by integration,

-(ai-x)=..£.

which requires no correction, inasmuch as for x=0, there is

^= 0.
dx

Multiplying the last equation by dx, and again integrat-

ing, there is

which as a^ and y simultaneously vanish, requires no correc-

tion.

For x:=zl, this becomes

And A being constant, this equation shows that the deflec-

tion at the point to which the inflecting force is applied,

varies as that force multiplied by the cube of the distance of

the point of application from the fixed extremity of the

plate.

3. If the direction of the force p coincides with the line

cormecting the two extreme points o and b, the point o

needs not to be fixed ; it will suffice if the rod rests against

an immoveable obstacle at that point: and the case will be

the same with that of a vertical rod resting on a horizontal

plane, and carrying a weight on its summit.

Let BO be the elastic plate resting on the horizontal plane

at o, (Fig. 125.) and bent into the figure bmo, by a weight

p, applied at b. Also, mn being a perpendicular let fall

from any point m, on the right line bo, the direction of the

compressing force, let mnh::?/, 0N=:a:. then we shall have

A
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in which a is constant, being the moment of the elastic force

at any point muUipHed into the radius of curvature at the

same point. The approximate value of r, for small inflec-

tions, being -72", and (Py being negative, the equation be-

comes,

Multiplying both members of this equation by 2dy, and in-

tegrating, we have

To find the value of c, let the greatest ordinate of the curve

be b, and for this ordinate we shall have -f^ziO. and there-
ax

fore, c=p.6^ which gives

or,

_^l K dy
dxzz-

WF\Vb'-.yy

Again integrating,

V A / , i/\

x-=.—r-' arc sm. zz. ^ )+c.
\/p \ b)

But for a;z:0, there is^zzO, and therefore, arc ( sin,=r^j — 0,

Wherefore, c'=0. and accordingly the equation of the

curve is

Va ( • y\ I . Vp
a7= -7-. arc (sin.^T-). or, v= ^' sin.——.a;.

'Jt^ \ bt ^
^J ^

For « = 0B=:/, we have ^=0. and therefore.

v/p
&.sin.-V-.^=0,

Va
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l/P
Whence, either 6 — 0, or sin. -y-./ziO. and to satisfy this

V A

last equation, we must have

Vp ,——. I zn mir.
v/a

in which m is some integer number. Accordingly, if the

force p does not satisfy this last equation, we shall have

6 = 0. i.e. there can be no inflection. Hence it appears,

that the least value of p, which can bend the rod or plate,

\/p
is that obtained by making w«i=I, in the equation-—./=wz7r.

which then is

p —
I'

and the same is the greatest force which the plate can sus-

tain without bendinsr.

R^
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SECTION XII.

OF THE FUNDAMENTAL PRINCIPLES OF STATICS.

1. The first who attempted to raise Mechanics to the

rank of a demonstrative science, was Archimedes ; and by

him it was founded on the principle of the lever, which he

established in the following manner.

Let AB be the lever, and c its fulcrum, (Fig. 126).

Taking in this line produced, bd z: ca, af = cb, the whole

line fd shall be bisected at c, and if fd were a cylinder, it

would be supported by a prop at c. Moreover, taking

AE = AF, the line ed is bisected at b. Wherefore, if the

cylinder were divided into two distinct cylinders at e, the

part FE would be supported by a prop at a ; and the part

ED by a prop at b, i. e. a force equal to the weight of fe,

acting vertically upwards at a, and a force equal to the

^veight of ED, acting vertically upwards at b, would equili-

brate the cylinder as effectually as a force equal to its wdiole

weight, acting vertically upwards at its middle point c. But

the force, equilibrated by this last, is the entire weight

acting vertically downwards at c. Whence it appears, that

two forces acting vertically at a and b towards the same side

of the line ab, shall equilibrate a third force acting at c in

a parallel and contrary direction, provided those forces are

as FE, ED, fd; or as the halves of those lines, viz. cb, ca,

ab, each of the forces being as the distance between the

points of application of the other two forces.

Various improvements in this demonstration have been

since proposed, by those who have regarded the lever as a

suitable foundation of mechanical philosophy. That the
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whole theory of statics may be derived from thence, shall

be freely admitted ; but it must also be admitted, by those

who are most favourable to this proceeding, that the me-

thods of applying the principle of the lever to other matters,

such as the pully, the inclined plane, the composition and

resolution of forces, are forced, isolated, and circuitous.

2. The principle next applied to the same purpose, was

that of the composition and resolution of forces, first intro-

duced by Newton in his ' Principia Mathematica Philo-

sophiae Naturalis,' which had received the imprimatur of the

president of the Royal Society, early in July, 1GS6, though

the merit of the improvement has been claimed for Vai-ignon.

This pretension, however, does not appear to have any sup-

port besides his own assertion, as his ' Nouvelle Mecanique'

did not make its appearance until the year 1725, which was

after his death ; and no trace of the discovery can be found

in any of his other productions. It plainly appears, that it

had not been made by him in 1685, the year in which he

published his ' Memoire sur les poulies a moufles' in the

' Histoire de la Republique des lettres ; wherein, unques-

tionably, he would have adopted this principle, had it been

then known to him, as it appears that he was afterwards

fully sensible of its immense importance; and as in that per-

fomance, it would have afforded him peculiar facilities in

calculating the efficacy of oblique strains. The principle of

the composition and resolution of forces pervades the whole

of the Principia Mathematica : and as it is impossible to

suppose that this performance could have been the work of

one or two years, it must be admitted, that it was known to

Newton long before the year 1685, when unquestionably it

was imknown to Varignon ; and, therefore, that Newton

was the first who made the discovery, as well as the first

who gave it to the public.

The demonstration by which this principle was originally

supported, was founded on the composition and resolution
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of motion. For taking the motions produced by the single

forces to represent these forces in quantity and direction,

the motion resuUing from the composition of those two mo-

tions was taken to represent the resulting force. This mode

of proof is recommended by its extreme simplicity. But it

has been objected, that it introduces the subject of motion,

which is different from that under consideration ; and that it

assumes the proportionality of the force to the velocity pro-

duced by it. That the velocity produced in a given body,

by a force acting during a given time, is the just measure of

that force, is a truth established by the most extensive ex-

perience ; but it is only by experience that it can be esta-

blished : whereas, by an independent proof of the principle

of the composition and resolution of forces, the whole theory

of statics is presented as a series of necessary truths, inde-

pendent of experiment or observation of any kind. These

objections were first urged by Daniel Bernouilli; and he was

also the first who supplied a demonstration of the kind re-

quired. Many others have been afterwards furnished, of

which the most simple and elegant was that of Duchalya,

the same which, with very little change, has been adopted in

Sect. I. Art. 2. of this elementary treatise.

3. But another principle could not long escape the notice

of writers on meclianics, being offered to their view in all

instances of equilibrium ; and that most obviously in the

several mechanic powers : this has been denominated the

principle of virtual velocities ; to explain which, it is to be

observed, that a force being applied to a material point, and

any small motion given to that point, by which it describes

the space ds in a given time, the space ds is the measure of

the velocity of that point. And if this line makes with the

direction of the force, the angle 6, then ds. cos. 6. is the ve-

locity estimated in the direction of the force itself. Now
the principle of virtual velocities is thus stated: " If any

number of forces are in equilibrio, whether applied to the
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same point, or to different points of a system, and any

small movements are given to the system of points, such as

their mutual connexions will admit, the sum of the products

obtained by multiplying each force into the velocity of its

point of application, estimated in the direction of the force,

is cipher ; and conversely, when for all the small movements,

which can possibly be given to the points of the system, the

sum of these products is cypher, the forces shall be in equi-

librio." Thus, if the points of the system are m, m, m , m'\

(Fig. 127.) connected together according to any condition

;

and if by any small displacement they are carried to the

points w, 71, n", n", respectively ; then mn, m'n, m'ti', m"n"

are the virtual velocities; and ns, n's, n"s", n"s" being per-

pendicular to the directions of the forces, the virtual ve-

locities, estimated in the directions of the forces, are tns,

ms, Ill's", m's". Now, putting p, p', p", p'" for the forces

acting at those points, and jt?, p , p", p", for the lines tns,

m's, m's", m"'s"', then according to the principle of virtual

velocities, the system being in equilibrio, we shall have

v.p + p'./-F p"./'+ v"'.p"'- 0.

And conversely, if the condition expressed by this equation

is fulfilled for every small movement which may be imparted

to the system, the forces are in equilibrio.

In announcing this principle, it is to be noticed, that the

forces p, p', p", &c. are always deemed positive ; and that

2J, p', p", &c. are positive, when their directions are the

same with those of p, p', p", &;c. and negative, when their

directions are opposed to those of the same forces. Thus,

in the figure; m's', m"s", being measured from the points

m', m" , in the directions of the forces p', p", are positive
;

but ms, m"s"' , which are measured from the points m, m"

,

in directions opposite to those of the forces p, v'", are ne-

gative.

4. It has been already observed, that this principle was

discovered by induction. Thus, for equilibrium in the lever,
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the power and weight acting in directions perpendicular to

the arms I, /', we had p./r= p'. /'. But a small angular mo-

tion being given to the lever, the extreme points of the arms

describe the spaces ds, ds. And these being similar circu-

lar arcs whose radii are /, /', we have

ds : ds' ::l: I'.

Wherefore,

T,ds = p'. ds'.

But the directions of the forces being regarded as positive,

whilst they tend to turn the lever about the fulcrum in op-

posite directions, one of the virtual velocities is positive, and

the other negative ; wherefore, putting ds ^.p, we shall have

ds zz — p'. which values being substituted in the preceding

equation, it becomes

P.jO + p'. p' zz 0.

More generally, the angles made by the directions of the

forces with the arms to which they are applied, being <p, ^',

we had for equilibrium, p./. sin. ^ = p'./'. sin. ^'. But— :z: y,
V V

wherefore, multiplying by these equals, the preceding equa-

tion becomes

p.f/^.sin.^ := p^ ds'. sin,^'.

Also, Q, B', being put for the angles made by the directions

of the forces, with the lines ds, ds', we have

sin.0rzcos.0. sin.0'z:cos.0'.

Wherefore,

T.ds.cos.0=F'. ds.cos.B'.

But,

ds. COS.9=p. ds'. COS. 0'=. —
J)'.

and therefore,

p./*-f p'.^rzO.

In the screw, the condition of equilibrium was found to

be that expressed by the equation
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p.^7rr= P.i.

wherein 27rr is the periphery of the circle described by the

power p; and I, the distance between the threads of the

screw, measured in a direction parallel to its axis : and these

being the measures of the velocities of the power and re-

sistance which, as before, are aiFected with opposite signs,

the equation is equivalent to p.^j + p'.^y= 0.

5. The principle of virtual velocities being thus verified

by induction, it was natural that those who treated of the

subject should have endeavoured to estabhsh it by a rigo-

rous demonstration. The proofs which have been offered

are, for the most part, attempts to reduce the principle in

question to that of the composition of forces. But to this

mode of proceeding it is objected, that instead of making out

an independent principle of mechanical science, it presents

a general expression of the conditions of equilibrium de-

duced from other principles. Lagrange has indeed at-

tempted to furnish a demonstration not liable to this objec-

tion, by resorting to the theory of the pully ; which is rea-

dily estabhshed, independently of the composition of forces,

when the parts of the cord, embracing each system of move-

able pullies, are parallel. Thus, if a cord passes over any

number of systems of fixed, and the same number of sys-

tems of moveable pullies, the ends of the cord being attached

to the blocks carrying the extreme systems, whether offixed

or moveable pulhes, and all the parts of the cord being pa-

rallel ; there will be equihbrium in the entire system, when

the forces apphed to the several parts of the cord are equal,

i. e. when the weights appended to the several blocks con-

taining the moveable pullies, are proportional to the number

of parts of the cord reaching those blocks. Thus, in (Fig.

128,) where in the first system there are two, in the second,

three, and in the third, four moveable pullies, the extreme

ends of the cord being attached to the blocks which carry
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the systems of fixed pullies, there will be equilibrium when

the weights are in the following proportion:

p:p':p"::

4:6 :8

But if either end of the cord is carried over a fixed pully,

and is then attached to the lower block, the number repre-

senting the weight carried by that block is to be increased

by unity ; the equilibrium being established in all cases, when

the weights appended to the lower blocks are proportional

to the number of parts of the cord reaching those blocks
;

so that if «, n' , n", express the numbers of the cords which

p p' p"
carry the weights p, p', p'' w^e shall have — zz—= —r,. for

n n' n

equilibrium. But for vertical weights, we may substitute

forces equal to those weights, and acting in any different di-

rections, provided that the cords pertaining to each of the

blocks which carry the moveable pullies arc parallel, as in

(Fig. 129). Now if the systems of moveable pullies suffer

any small displacement, let ds, els', ds', See. denote the

spaces described by their several blocks, estimated in the

directions of the cords, and the length of the entire cord

being invariable, we have

nds -{.\'ds'-\- n"ds"+ &c. =0.

and, therefore, substituting for w, «', ?i", &c. the forces to

which they are proportional,

p.ds + p'. ds' + p'. ds'' -f &c. =0.

The application of this theorem is obvious ; for the blocks

being regarded as the points of a system to which the forces

p, p', p", &c. are applied, and ds, ds', ds", &c. being the vir-

tual velocities of those points, estimated in the directions of

the forces, we have

T.p + P'.;/+ T^.J}"-^ &c. =0.

Lest the demonstration, given above, should seem to be

limited to tending or divellent forces, let any one of the
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moveable blocks and its corresponding fixed block be sup-

posed to exchange places, and the demonstration shall be

equally valid, i. e. the equilibrium shall still subsist, whilst

the direction of the force, and that of the reaction occasioned

by it in the fixed point, are changed into the opposite.

Moreover, as the equilibrium of a system is not disturbed by

changing the point of application of any of the forces for any

other point in its line of direction, it follows, that the origi-

nal points of application may be retained, whilst the forces

there applied are converted into compressing forces.

Though it has been thus proved, that in all cases ofequi-

librium we have p./?+p'.p' + p'-p' + &c. =0. it is not to

be supposed that the converse of this proposition is true, in

the manner stated by some writers on the subject. The

foregoing equation is indeed a test of equilibrium, when it

subsists for every small motion whatever that may be sup-

posed to be imparted to the system, and not otherwise. For,

any two of the forces, p, p', p'', &c. being varied, both being

increased or both diminished in the same ratio, the points of

application of those forces may be supposed to be moved,

the others remaining undisturbed. In the case here sup-

posed, the virtual velocities of those points would be reci-

procally as the forces there applied ; and being, moreover,

affected with opposite signs, the equation p.^-j-p'.^Z-j-p''.^/'

-1-&C. zzO. would still subsist, though the equilibrium no

longer subsists in the entire system.

But the fundamental conditions of equilibrium in the

systems of pullies are those expressed by the equations

p p' p"—— —;-= -;7-, &:c. and if these conditions are satisfied, the
n n n

equilibrium is established. It remains then to be seen how

far these conditions are secured, when that expressed by the

equation pp.4-i'''i>'+p".i5"+&c. =0. is satisfied. Let this

equation, therefore, be supposed to subsist : from the inex-

tensibility of the cord, we have, moreover, the equation
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{np-{-np -^n'p" -{- &c.) «= 0.

and by combining this with the preceding equation,

(p— ««)p+(i''— ^^'")/^'+(p""~*^"«)p"+ &c. =0.

Now, in order that this may be resolved into the equations

F~na= 0. v~n'a~^. p"— w"a=z:0. &c.

or,

-=:-=C,&c. -a.

it is requisite that the quantities /;, p', p" , Sec. should be so

many independent variables. From whence it follows, that

to render the condition expressed by the equation p/j + ^'p'

-{-p"p"-\- 8cc. = 0. sufficient for equilibrium, this equation

must subsist for all the small movements which can possibly

be imparted to the points of the system. But it is not requi-

site that the movements ^^,^',/>", &c. should be absolutely

independent, in order that the equation pjp+p'/* -|-p''i^"+ &c.

= 0. should become a test of equilibrium. So far as the

motion of any point is restrained, whether by a surface to

which it is confined, by a fixed point, or axis, round which it

may revolve, or by its connexions with other points of the

system, so far is the equilibrium of the system necessarily se-

cured ; whence it follows, that we may omit those movements

which are impossible, and pronounce that the equilibrium is

provided for, when the preceding equation is satisfied in the

case of all the small movements which can possibly be im-

parted to the points of the system, consistently with the con-

ditions by which those movements are restricted.

6. The principle of virtual velocities being thus ex-

plained, it remains to show, by a few examples, how it is

applied.

Let there be two inclined planes, whose lengths are /, /',

and whose common height is //, placed back to back : it is

required to find the conditions of equilibrium for two weights,

p, p', placed on these planes, and connected by an inexten-
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sible cord which passes over the summit ; the parts of the

cord measured from the summit being respectively parallel

to the planes.

From the condition of the inextensibility of the cord, it

follows, that one of the weights cannot descend, unless the

other ascends through an equal space ; therefore, the virtual

velocities are equal and contrary. To reduce these to the

vertical direction, which is that of the weights, they must he

multiplied by the height, and divided by the lengths of the

planes. Wherefore,

p=.ds.
-J.

p — —CIS.
J,.

whence the equation F.p -\-^'.p'= 0. becomes

F.ds.
-J
— f'.(Is. j,.

or dividing by ds.h, it is

which shows, that for equilibrium, the weights must be pro-

portional to the lengths of the planes on which they are

placed.

Let two weights, connected by an inextensible cord, be

placed on the surface of a horizontal cylinder; and let it be

required to find their positions for equilibrium.

From the condition of the inextensibility of the cord, it

follows, that the virtual velocities are equal and contrary;

and these are reduced to the vertical, when multiplied by the

sines of the arcs, measured from the weights to the summit.

Accordingly, puting Q, 0' for those arcs, we have

2)'=.cls.&in.0. p'=:— ds.smd'.

whereby the equation T.p-{-F\p'=:0. becomes

T.ds.sin,9=:F\ds.sm.$\

or,
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p.sin.0= p'.sin.0'.

which shows that the whole arc commensurate to the cord,

is to be divided into two parts, whose sines are as the

weights; and these parts being measured from the summit,

that the greater weight is to be placed at the extremity of

the lesser, and the lesser weight at the extremity of the

greater arc.

The same thing would appear by regarding the weights

as placed on the tangent planes ; for then it appears from the

preceding problem, that the weights must be reciprocally as

the sines of the horizontal elevations, i. e. reciprocally as

the sines of the arcs measured from the bodies to the highest

point.

If a number of connected weights are in equilibrio, the

common centre of gravity shall neither rise nor fall, in con-

sequence of any small movement which may be given to the

bodies of the system. And conversely, if such is the con-

dition of the common centre of gravity, the weights are in

equilibrio.

For the distances of the several weights from a horizontal

plane being denoted by z, ss' , z'\ z", &c., and that of the

common centre of gravity from the same plane, by z, the

equation v.p -f p'.//-f v".p"-\- v"'.p"-\- &c.= 0. becomes

Y.d.z+ v'.d.z'-{- ^".d.z"+v".d.z'"+ &cc. - 0.

But by Sect. II. Art. 7. we had

P.^4.p'.^'+P".^"+P'".^'"+ &C. =:

(p+ p'+p"-fp'"+&c.)z.

giving

v.d.z+ v'.d.z+Y".d.z"-\-v"'.d.z"-\- &c. =

(p+ p'+p"+p'"_|_&C.)(/.Z.

Wherefore, the equation vqi ^v'.p'-\-T".p"-\~ Bcc — O. is

equivalent to

d.z - 0.
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Accordingly, when the weights equihbrate, this last equation

subsists ; and conversely.

When the common centre of gravity takes the highest or

lowest position possible, we have

dz-0.

and therefore, the system is in equilibrio. But the converse

of this proposition, viz. that when c?.z = 0, z is a maximum

or minimum, though generally true, is liable to the usual ex-

ceptions for maxima or minima, discovered by making the

differential equal to cipher. For if, as may happen in con-

strained motions, the common centre of gravity describes a

curve of contrary flexure ; at a point of that curve where the

tangent is horizontal, the equilibrium shall subsist, although

the common centre of gravity may not be then in the highest

or lowest position it can take.

For the wedge, the power and resistances being applied

in directions perpendicular to the back and faces, it was

found that for equilibrium, the three forces should be pro-

portional to the surfaces on which they act, i. e. to the three

sides of the triangular end of the wedge, by which those

surfaces may be represented.

To derive this theorem from the principle of virtual ve-

locities, let the wedge be represented by (Fig. 130.) where

B, L, l' are the back and faces, a, /3, 7, the angles to which

they are opposed, and p, p', p" the forces acting perpendi-

cularly on B, L, \!. The three forces being supposed to be

directed to the same point, which may be taken for their

common point of application, let this point describe the line

ds, in the direction of the power p ; the line of the motion

shall then make, with the direction of the force p', an angle

equal to the angle y, and with the direction of the force p",

an angle equal to the angle /3 ; and we shall have

P- V' -P" ''

1 : cos.7 : C0S./3.
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and, therefore, by the principle of virtual velocities,

p =: p'. cos.y -f-
p". C0S./3.

This equation involves the three quantities p, p', p'', and,

therefore, does not express their relative magnitudes. To
express this relation, the equation should contain but two of

those quantities. And as the direction of ds is arbitrary, it

may be supposed to be perpendicular to that of one of the

forces ; for then, the virtual velocity, estimated in the di-

rection of that force, shall be cipher ; and the correspond-

ing term shall vanish from the equation. Accordingly, let

ds be perpendicular to the direction of the force p", i. e.

parallel to the face l'; then

2)''- 0.

and therefore

p .2J = 0.

and the condition of equilibrium expressed by the principle

of virtual velocities is

p.^j 4- p'* P^ — 0'

But the line ds makes, with the direction of the force p, an

angle whose complement is /3 ; and with the direction of the

force p' an angle whose complement is a. Wherefore,

p :p' : : sin.|3 : sin.a : : L : B.

so that the proportion p :
p': i^)' '-2^ is

p :
p'

: : B : L.

And in the same way, by taking ds in the direction of the

face L, we get

p :
p"

: : B : l'.

which two proportions may be stated as before,

P . p/ . p//

: : B : L : l'.

Ordinarily, the triangle by which the wedge is repre-

sented, is isosceles, i. c. l' = l, and each of the angles at
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a
the base is the complement of 5. in which case, the relation

of the forces appears by the equation

p :=: p'. cos.7 + p''. C0S./3.

which then becomes

p = 2p . sm.-.
2

To ascertain the ratio of the power and weight for the

inclined plane ; let p, p' be those forces, and let their com-

mon point of application be supposed to be carried vip the

plane through the space ds. Then, p, p' are as the cosines

of the angles made by the plane with the directions of the

forces p, p'. Wherefore, if e denote the angular elevation

of the plane, and 6 the angle made by the plane with the

direction of the power, we shall have

p'.p'w COS. 9 : sin.e.

giving for equilibrium

P.COS.0 — p'. sin.e.

If the power acts in a direction parallel to the plane,

COS. 9 = 1. and p zz p'. sin.e.

7. To show what number of equations may be obtained

from the general theorem, and in what manner they are to

be apphed, let 9, 9', 9", &c. be the angles made by the di-

rections of the forces p, p', p", &c. with the infinitesimal

lines ds, ds', ds", &c. described by their several points of

application. The equation

T.p + p'.iy+ p".y+ &c. = 0.

is equivalent to

F.ds.cos.e + p'. ds'.cos,9' + p".ds". cos.0"-f.&c.=O. («)

Now, referring the points of application to three rectan-

gular axes, let the coordinates of the point of application of

s
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the force p be x, y, ^. Those of the point of application of

the force p', x', y\ z', &c. Also, pvitting «, j3, 7, for the an-

gles made by the direction of the force p, with the axes of

X, y, and z respectively; a', |3', 7' for those made by the

direction of the force p' with the same axTes, and so forth.

Likewise, putting ^, x> ^ for the angles made by the line

ds, with the axes
;

0', x, t//' for those made by ds' with the

same, and so forth ; we have, by a well known theorem,

008.0= cos.^.cos.a + cos.x-cos.j3 + cos.;//. cos.7.

and

ds. cos.B — ds (cos.0. cos.a + cos. x. cos./B + cos.i//. cos.7)=
dx.cos.a,+ (ly- C0S./3 + ^•^- cos. 7.

And similarly,

ds.cos.9'= dx'. cos.a -j- dy'. COS. [5'+dz\ cos.7'.

and

ds". co^.B" =dx".cos.a"-\-dy". cos.^"-\-dz". cos, 7".

the coefficients of all the forces being expressed in like man-

ner. Wherefore, making these substitutions, equation («)

becomes

v.cos.a.dx + p'. cos.a'.dx' •{•'p". cos. a", dx"+ '£'".

cos.c<."'.dx'"-^&LC.

p.cos.|3.(///+p'. cos./3'.f/;/+p". C0S./3". dy"-\-v"'.

C0S./3'". f//"+ &c. I -^' ^^

T.cos.y.dz + P. COS. 7'. dz'-\- p". cos.7". dz" + ^'"•

cos.j"'.dz"'+&c.

If the points of application are unconnected, so that the

motion of one of those points shall have no influence upon

another, then are the quantities p, p', p" ,
p'", &c. inde-

pendent variables ; and therefore, also dx, dy, dz, dx\

dy', dz', &c. are independent variables : whereby the

last equation is resolvable into so many distinct equations,

viz.
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P.COS.a=iO. p'. COS.a'rrO. p". cos.a" = 0. See.

p.cos./3= 0. p'. cos.^' = 0. p". cos./3"=0. &c.

P.cos.yz^O. p'. cos.y'zrO. p". cos.7"=:0. &c.

But if the points of application are connected in any manner,

so that one of them cannot move unless by moving another,

according to some certain law ; then, the equations express-

ing the conditions to which the system of points is subjected,

shall serve to eliminate so many variables from equation (b),

and the coefficients of those that remain, being put equal to

cipher, shall express the conditions to be satisfied for equi-

librium.

8. If the forces are all applied to the same material point,

we have

ds = ds'= ds"= ds"', &c.

wherefore,

dxzzdx' -rzdx" ^=- dx'", &c

.

dy-dy'-dif-dij", &c.

dz-dz-dz"-dz'", Sec.

and equation (Z>) becomes

(p.cos.a + p'. cos.a'-j-P". cos.a" + &c.) dx

+ (p.cos.j3 + p'. cos./3' + p",cos./3"+ &c.) i/y
J^
= 0. {c)

-|-(p.cos.7 + p'. cos.y'+ p''. cos.7"-|-&c.) dz

which, as dx, dy, dz, are independent variables, is re^

ducible to three distinct equations, agreeably to Sect. I.

Art. 11.

If the point to which the forces are applied, is confined

to a surface whose equation is l = 0, the differentials dx,

dy, dz, are no longer absolutely independent of each other.

Wherefore, equation (c) is no longer resolvable into three.

But putting this equation in the form x.dx+Y.dy + z,dz=0.

s2
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and eliminating dx between this and the differential equation

of the surface, viz.

clh
J

dh , c?L , „—— . dx + -7—. dy + —;—. dz — U.
dx dy dz

we have

dh J </l , dh ^ di. -, f.

dx ^ dx dy -^ dz

In this equation, the variables dy, dz, are independent:

"wherefore, their coefficients are, each, equal to cipher,

giving for the conditions of equilibrium

</l c?l _, dh dh „
Y.-. x.^- — 0. z.- x.^- := 0.
dx dy dx dz

For example, let the equation of the surface be a.dx + b.dy

+ c.dz= 0. we have

dh _ dij dh _
dx ' dy

*

dz~ '

which values being substituted in the general formula, we
have the equations

Y.a—x.b=0 z.a— x. c = 0.

The elimination is more expeditiously performed by

adding the differential equation of the surftice, multiplied

by an indeterminate coefficient, to the general equation of

equilibrium : then putting the coefficient of each variable

equal to cipher, and eliminating the indeterminate coefficient.

Thus,

, f/L „ , dh „ dh _
x+ m.-r- = 0. Y+ 7n.-r- = 0. z + m.-r-= 0.

dx ay dz

from which, eliminating m, we have

dh dh - dh dh
Y.- X. ^- = 0. Z.- X. -r-zzO.
dx dy dx dz

the same with those obtained by directly eliminating dx, be-
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tween the general equation x.da; -^Y.di/ -\-z.dz:=:0. and the

equation of the surface.

9. Equations (c) will serve to show the resultant of any

number of forces applied to a material point : for any one

of the equilibrating forces, its direction being changed into

the opposite, is the resultant of the remaining forces.

Thus, to find the resultant of two forces, there are but

three terms in each of those equations. And the plane of

the forces r, p', being taken for that of .r, ?/, we have

COS. 7 = 0. cos.7'=0.

and therefore,

cos. 7"= 0.

Wherefore, the equations by which the resultant of the

forces p, p', is to be determined in quantity and direction,

are

p". cos.a" = P. cos.a+ p'. COS. a',

p". cos./3"=: P. C0S./3 + p'. cos.|3'.

The forces p, p', p", being represented in quantity and

direction by three right lines drawn from their common point

of application, the terms of the equations express the coor-

dinates of the extreme points of those lines : and the equa-

tions show that each of the coordinates of the extremity of

the line f", is equal to the sum of the corresponding coor-

dinates of the extremities of the lines p, p', i. e. that the

coordinates of the extremity of the line p" are those of the

extremity of the diagonal of the parallelogram whose sides

are the lines p, p', and, therefore, that the line p" is that

diagonal.

In the same way, and without the trouble of elimination,

it may be seen that the resultant of three forces applied to

a material point, is represented in quantity and direction

by the diagonal of the parallelopiped, whose three sides

represent the three component forces in quantity and direc-

tion.
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10. To find the conditions of equilibrium for forces ap-

plied to a rigid system, it is to be observed, that the system

cannot be moved, except by a movement of translation, by

which all the points describe equal and parallel lines ; or,

by a motion of rotation. For the first kind of movement we

have

dx=:dx'= dx", &c.

dy=.dy'=.dy", &c.

ds=d^'=dz", &c.

which changes the equation {b) into

(p.cos.a-f-p'. cos.a'+p". cos.a"+&c.) dx\

+(p.cos.j3+p'. cos.j3'+p ". cos./3"-f &c.) d?/ > = 0.

+(p.cos.7+ p'. COS.y'+P". C0S.7"+&C') (f^-^

giving

P.cos.a+ p'. cos.a'-j- p". cos.a"+ &c.= 0.

p.cos. j3+ p'. cos.j3'+ p". cos. j3+ &c. = 0.

p.cos.-y+ p'. cos.7'-|-p".cos.7''+&c. =0.

which are the three first conditions of equilibrium among

a number of forces, applied to the points of a rigid system.

Any rotatory motion which may be given to the system,

is resolvable into motions round the axes of the coordinates.

Now if the angle dO is described round the axis of z, no

change is made thereby in the magnitude of any of the lines

z, z', z", &c. which are the coordinates of the points of ap-

plication parallel to that axis, therefore

dz=dz'=:dz", &c.= 0.

Moreover,

jn_dx _ dy _ dx' _ __dj/ „

~ y ~ X ~ y' ~ x'
'

or,

dx—y.dd, d.x'—y'.dO, &c.

dy= —x.d.B, dy'= - x'.dB, &c.
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and these values being substituted in equation (b), it be-

comes

p (y.cos.a— A\cos./3)+ p' (y. cos.oc'—x'. cos./3')+&c. = 0.

In the same manner, for a movement of rotation round the

axis of
I/,

we shall have

p(ir.cos.'y— ^. cos.a)+ p'(a;'. COS.7'— sr'. cos.a')+ &c. =rO.

And for a movement of rotation round the axis of x, the

equation

p(.^.cos.j3— ?/.cos.7)4-P'. (^'. cos.jS — 2/'.cos.7')4-&c.=0.

which completes the six conditions of equilibrium for a sys-

tem of invariable form, agreeably to Sect, IV. Art. 1,





DYNAMICS.

SECTION L

THE MEASURES OF MOTION AND FORCE.

1. That branch of mechanical science which relates to

unbalanced forces and their effects, is called Dynamics : and

as the effect of unbalanced force is motion, it seems expe-

dient, in the first place, to treat of motion, independently of

the causes by which it is produced.

When a body changes its place, it is said to be in motion

;

and the rate of that change is called its velocity. Now ve-

locity is not itself a mathematical quantity; but if it can be

measiu'ed by quantities of this nature, it thereby falls within

the province of mathematical science.

The velocity of a body is greater or lesser, according as

the space described by it in a given time is greater or lesser.

Wherefore, the space described in a given time is the mea-

sure of the velocity : and as in comparing the velocities of

different bodies, or of the same body at different periods, by

the spaces described, the times must be equal, it becomes

necessary in every case of such comparison, to fix on some

portion of time for this purpose. This portion is denomi-

nated the unit of time. The velocity is, therefore, said to

be measured by the space described in the unit of time.

Whatever space a body describes in a unit of time, it is

evident that with the same velocity, it would describe twice
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that space in two such units ; and generally, that the space

described with the same velocity, is obtained by multiplying

the space described in a unit of time, by the number of such

units contained in the time of the motion. Wherefore, v,

denoting the velocity ; t, the number of units in the time of

the motion ; and s, the space described, there is * z= vt. or

V — -. of which it is to be remarked, that whatever be the

magnitude of 5, it becomes, when divided by t, the space de-

scribed in a unit of time.

In all cases, such as this, wherein quantities of diiFerent

kinds seem to be compared together, the terms are rendered

homogeneous by regarding all, or all but one, as numbers.

Thus in the preceding equation not only v and t, but s also

may be regarded as a number ; viz. the number of units of

space contained in the space described. These units of

measure for the several quantities which are involved in the

same equation are, all but one, purely conventional. For

example, if I" is taken for the unit of time, and one foot for

the unit of space, then the unit of velocity is that of a body

which describes one foot in a second of time. So that what-

ever be the space described, or the time of describing it, the

s
quantity - shall be the number of feet described in a second,

or, which is the same thing, the number of units in the velo-

city of the moving body. In these estimates, the velocity is

supposed to be uniform ; i. e. it is supposed that the body

describes equal spaces in equal times during the whole con-

tinuance of the motion : and the same thing is always to be

understood, when not otherwise expressed.

For the more ready solution of questions relative to such

motions, it will be convenient to compute the time from the

moment of the passage through some one point ; and also to

denote the place of the body, at any instant, by its distance

from some point taken at pleasure in the line of its motion.
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Thus, let the body move in the dh-ection ab (Fig. 131.) with

the velocity v, and let the time be measured from the moment

of its passage through d ; i. e. let d be the point for which

t — o. Then if m is the place of the body after any time t,

there shall be T>m-=vt. Futher, let c be the point from

which the distance of the body is to be measured. Putting s

for this variable distance, and a for the line cd, we shall

have s— a {zz Dm) ^ it. and s zz a -{- vt. If the point c is

taken at the other side of d, it is evident that the sign of a

must be changed.

If a second body moves uniformly in the same line with

the velocity v, let d' be the point through which it passes at

the instant from which the time is computed, i. e. at the same

instant in which the former body passes through d ; and let

/ be its distance from c, and a the distance cd'; there will be

in like manner for this body, s'= «'+ *''^- Now if it is re-

quired to find the time of the meeting of these bodies, this is

found by making s=:s' in the two last equations, which gives

/= -,. and by substituting this value of ^, in the expres-
1) — V

sions for s or /, there is s = —- When the value off,
v~v

given by the former of these two equations, is negative, it is

inferred that the meeting has occurred before the instant,

from which the time is computed, i. e. before the arrival of

the one body at d, or that of the other at d'. and when the

denominator of that value is cipher, /. e. when v=v, the

value itself is infinite: which imports that the bodies never

meet. This indeed is evident of itself; inasmuch as the bo-

dies, in that case, move in the same direction with the same

velocity.

2. If the spaces successively described in equal times con-

stitute an increasing series, the motion of the body is said to

be accelerated ; and if they constitute a decreasing series,

the motion is retarded. When this occurs for portions of
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time, however minute, the velocity is continually varied ; and

in such cases, it may not be so obvious how the velocity of

the body, at any one instant of time, or point of space, is to

be measured. For if the velocity is accelerated, the space

described in any portion of time, is greater than that which

would be described with the velocity at the beginning, and

less than that which would be described with the velocity at

the end of that portion of time ; and the contrary if the ve-

locity is retarded; i. e. v and v' denoting these velocities,

s s
there is v<C^-:<iVy for one case, and «;> - >r', for the other.

T t

This difficulty is met by supposing s, and consequently t, to

be indefinitely diminished : for the change of velocity, how-

ever rapid, is gradual. Whence it is plain, that by diminish-

ing the space, and consequently the time, indefinitely, v and

v', the velocities at the extreme points, shall approach within

any assignable difference ; and therefore, that the quantity

-, which is ever intermediate between them, shall be ulti-

mately equal to either. Accordingly, ds and dt, denoting

the indefinitely small increments of space and time, there

must be,

_dj_
^~

dt'

These things being established, it may be satisfactory to

see how the space, time, and velocity, as dependent, each of

them, on the other two, may be graphically represented.

3. Let a right line such as ab and its parts, (Fig. 132.)

represent the -time of the motion and the parts of that time,

and let a continued line hb'b"b"', &c. be drawn, such that

its perpendicular ordinates shall be proportional to the velo-

cities at the moments of time corresponding to the points

of the line ab on which they are raised : the spaces de-

scribed by the body in any portions of the time of its mo-

tion, shall be proportional to the areas standing on the cor-
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responding portions of the base. For if the time ab is di-

vided into the equal portions aa, a a", d'd" , &c. and if the

velocity continued unvaried during each of those portions of

time, the spaces described in those times would be repre-

sented by the rectangles am, am, a"m", &c. or by the rect-

angles ab', a'b", a"b"', &c. according as it is the velocity at

the beginning or ending of each portion of time that is sup-

posed to continue unvaried during that time : and therefore,

the space described in the whole or any portion of the time

AB, would be represented in magnitude by the area of the in-

scribed or circumscribed serrated figure standing on the whole

or that portion of the line ab. This will hold however fre-

quently the velocity is supposed to change, i. e. however mi-

nutely the line ab is divided. It therefore holds for the

limit of the space so described by the body, and for that of

the serrated figure by whose area it is represented. But the

limit of the former is the space described by the body mov-

ing with a velocity continually varied ; and that of the latter

is the area of the figure wherein the serrated boundary is

replaced by the continued line bb'b", See. For, by produc-

ing each of the right lines bni, b'm , b"m", 8cc. until they in-

tersect the greatest ordinate, it will appear that the excess

of the area of the circumscribed above that of the inscribed

figure, is the difference between the greatest and least of the

elementary rectangles : /. e. putting /, and /' for the greatest

and least ordinates, and m, for the base of each of the ele-

mentary rectangles, the difference is m[l—l') which vanishes

with m. And since, by the continual subdivision of the line

AB, the circumscribed and inscribed figures shall be made

to approach within any assignable difference, the same must

hold a fortiori when either of them is compared to the figure

bounded by the continued line bb'b', &c. which is interme-

diate between them.

4. Having shown how motions are measured, we may

proceed to show how they are compounded and resolved.
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Perhaps there is no motion observed in nature that is not

the resultant of several other motions. Thus if a body is

moved in the hold of a ship, whilst the ship moves on the

surface of the sea, and the surface of the globe revolves

from west to east, round its axis, and the earth itself pro-

ceeds in its annual course round the sun, and the sun, toge-

ther with the whole planetary system, moves round some of

the nearer constellations, the motion of the body in absolute

space is compounded of all these motions.

It is now to be shown how the resultant motion is to be

collected from its components, and vice versa ; and to begin

with the simplest case, that of the composition of two mo-

tions, it may be stated, that if the two component motions are

represented in quantity and direction by two sides of a pa-

rallelogram, the resultant shall be represented in quantity and

direction by the diagonal ofthat parallelogram. This theorem

has been already domonstrated in the note appended to Sta-

tics, Sect. I. Art, 2. in addition to which the following may

serve as an exemplification. If a body moves from a to b in

the right line ab (Fig. lorS.) whilst that line, supposed rigid,

is carried to the position a"b" ; at the end of that time the

body shall be found, not at b, but at b", and if the velocity

of the body in the rigid line is always to that of the line it-

self, in the ratio of ab to aa", the line being always parallel

to AB, which is its first position, the absolute motion of the

body shall be in the right line connecting the points a and

b". For the velocities being constantly in the ratio of ab to

aa", the lines described by these motions in the same time,

shall be in the same ratio : and these lines being the coordi-

nates which mark the position of the body at any one in-

stant, it follows, that the body is always to be found in the

right line ab".

5. What has been shown respecting the composition of

two motions in diflferent directions may be extended to the

composition of any number of coexisting motions in any di-
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rectlons, by continually compounding a new motion with

the partial resultant already discovered. This method of

successive compositions is easily practised. Thus, if a body

moves through a certain space in one direction, and a cer-

tain space in another direction during the same time ; it has

been shown that, at the end of that time, it shall be found

at the extremity of the diagonal of the parallelogram whose

sides are the lines it would have described by the separate

motions. Wherefore, the place of the body at the end of

the given time is found, by drawing the line it would have

described by one of those motions singly, and from its ex-

tremity a line equal and parallel to that which it would have

described by the other motion singly ; i. e. it v/ill be found

at the same point, at which it would have arrived had these

motions been successive instead of cotemporaneous. For

example, if ab is the line it would have described by one of

these motions, (Fig. 1 34.) and ac that which it would have

described by the other in the same time ; the point at which it

arrives, by the compound motion, is found by supposing it to

have been carried by the former motion to b, and to be sub-

sequently carried over the hne bc' equal and parallel to ac.

Now if a third cotemporaneous motion had been communi-

cated to the body, by which alone it would have been car-

ried over the lin-e ad in the same time, this may be supposed

not to have commenced, until after its arrival at c' ; and by

drawing from this point a line, c'd', equal and parallel to ad,

we have the point d', to which it arrives, in consequence of

the three motions simultaneously communicated ; and if

each of these motions were uniform and rectilinear, the risfht

line ad' shall be that actually described by the compound

motion ; and this motion shall be also uniform, bearing to

any of the partial motions, the ratio of the line ad' to that by

which the partial motion is represented. From all which it

is inferred, that if several motions are simultaneously com-

municated, the point of space at which the body is found at
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the end of any portion of time, is the same at which it would

arrive, if these movements were communicated successively.

Accordingly, the place of the body to which these move-

ments are simultaneously communicated, and the line de-

scribed by it in any given time, are found as follows. From

the body let the several lines be drawn which would have

been described by it in a given time, for example, 1'', by

the separate motions : then from the extremity of one of

those lines, let a line be drawn equal and parallel to a se-

cond ; and from the extremity of this, another equal and pa-

rallel to a third; and so on, until all the lines originally

drawn from the body, except the first, are thus transferred

:

the extremity of the last line is the point where the body

shall be found at the end of 1", when the several movements

are coexistent; and the line actually described, shall be that

connecting the points occupied by the body at the beginning

and end of the motion. If the line last drawn terminates in

the point of departure, the polygon is closed, and the abso-

lute motion of the body is nothing.

It cannot escape notice, that all which has been here

shown, relative to the composition of motions, is strictly co-

incident with that before established, respecting the compo-

sition of forces, Sect. 1. Art. 8.

This composition of motions may be easily imagined by

presenting different examples. Thus, if a man climbs to the

topmast of a ship, whilst the ship itself is in motion, his actual

motion is compounded of the motion of the vessel, and of

that which is the consequence of his own exertions. Thus,

also, if a body moves on a flat surface, whilst this surface is

moved on another surface, and the second on a third, and so

forth, for any number of surfaces, the motion of the body

shall be compounded of all these several motions, and the

point at which it shall be found at the end of any given time,

for example, 1", shall be that at which it would have arrived,

if it had been directed by these motions successively, each of
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them being continued for 1". The courses are indeed diffe-

rent, as are also the times. In the latter case, the figure is

a polygon, and each of its sides is described in 1" ; and in

the former case, the body describes in V the line which

closes the polygon : but the point to which it arrives is the

same, whether the motions are simultaneous or consecu-

tive.

6. As motions are compounded, so are they also resolved

in the same manner as forces : the resolved motions being

represented, in quantity and direction, by the sides of a tri-

angle or polygon constructed on the line representing the

motion to be resolved. But the relation between the resultant

motion and its components is exhibited in the way best fitted

for analysis, by resolving the motion according to three rect-

angular axes : and this also is done in the same way as for

forces. The motion in each axis is had by multiplying the

line representing that motion into the cosine of the angle

which its direction makes with that axis : and all the move-

ments, whether simultaneous or consecutive, being treated

in this way, the problems respecting curvilinear motion may
be reduced to those relative to rectilinear motion ; and the

whole theory of dynamics unfolded, not only with greater

facility, but also in a manner more fertile in general results.

7. The composition and resolution of motion being so

far explained, the subject which next offers itself for consi-

deration is the cause of motion : and for this we are com-

pelled to look beyond the body moved. For a body at rest

is observed to continue in the same condition, until it is

disturbed by something external to itself; and as it cannot

produce motion in itself, so neither can it increase the velo-

city of that already imparted to it. But whether a body set

in motion has any natural tendency to rest, whereby it is

disposed to return to that state, is a question not so readily

answei'ed. For though, like the former question, relative to

the generation of motion, this is to be decided by an appeal

T
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to facts, yet the facts are such as require a more attentive

consideration. It is observed of all motions near the earth's

surface, that they require for their continuance a continued

renewal of the impressions by which they had been pro-

duced ; without whichj if not suddenly checked, they all

gradually decay, until at length the bodies return to a state

of rest. Thus, if a ball is rolled on a level plane, its motion

is continually retarded ; and after describing a space greater

or less, the motion is altogether lost. And in the same way

a pendulum, being let fall from a certain height, oscillates

through arches continually decreasing, until at length it be-

comes quiescent at the lowest point of the arch.

From this seemingly spontaneous relaxation of motion,

it might be supposed that there is in matter a natural ten-

dency to rest, or a preference of rest to motion. But before

that this conclusion can be drawn, it should be considered

how far the observed retardations may arise from external

impediments : The existence of such impediments is certain :

the attrition of the surface on which the body moves is one,

and the resistance of the medium in which it moves is

another. These obstructions cannot be altogether removed,

but they may be reduced, and then it is invariably observed,

that the retardations are reduced in the same proportion,

and the motion is continued for a period suitably longer.

Thus, by levigating the plane, the body which rolls on it

proceeds to a greater distance. By polishing the axle on

which the pendulum oscillates, in order to diminish the

attrition, the number of vibrations performed is suitably

increased ; and the reduction of the diameter of the axle,

i. e. the diminution of the leverage by which the force of

friction acts against the moving body, has the same conse-

quence. The retardation of motion in a resisting medium

is less, as the density of the medium is less ; and in the

same medium it is diminished, by increasing the weight

of the moving body, in relation to the surface which it
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opposes to the reaction of the medium. By such contri-

vances, the resistance opposed to the motions of bodies can

be greatly diminished, and the result is such as to warrant

the inference, that if all impediment could be completely

removed, there would be no loss of motion sustained. In

this way we are obliged to reason respecting motions near

the earth's surface ; where, though we may diminish, we

cannot completely remove all manner of obstructions. But

the proof afforded by the heavenly bodies is decisive of the

question ; the motions of these bodies having continued for

ages, without the least sensible abatement.

The perfect inactivity of matter being then admitted, or

its incapacity to make any change in its own condition, as to

rest or motion, it follows, that every such change, whether

in the quantity or dh'ection of the motion, is to be regarded

as an indication of the action of some external force ; which

leads us to consider how the force exerted is measured by

the motion or change of motion produced by it. The ques-

tion will occur, whether is it to be measured, simply, by the

quantity of motion, or by its square, cube, or what other

function ? And whether by the effect produced by its ac-

tion, through a given space, or during a given time ? This

doubt as to the measure of force by motion, is easily re-

moved by the observation, that the motion or change of

motion produced in a body, by the action of a given force

during a given time, is the same, whether the body sub-

jected to this action is at rest or in motion ; and if in motion,

whatever be the direction of the force applied with respect

to that of the motion already existing. Thus, all bodies on

the earth's surface move from west to east round the earth's

axis, and are carried in the same direction by the progres-

sive movement of the earth round the sun: yet, if a body

partaking of such a motion, is acted on by a certain force

during a certain time, the same effect is produced, whether

t2
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the force is directed from east to west, or from west to east,

or in any transverse direction whatsoever. The same ob-

servation may be extended to a body contained in a ship in

motion. The relative velocity produced by a force is the

same, in whatever direction the force is applied.

Now, the change of motion produced in a given body,

by a given force, acting during a given time, being inde-

pendent of the state of the body to which the force is ap-

plied, it follows, that a double or triple force must produce

a double or triple change of motion ; and, generally, that

the force is proportional to the change of motion produced

by it in a given time ; the change of motion being estimated

in the direction of the force. For whatever be the magni-

tude of the force, if it is divided into a number of units, the

change of motion produced by each unit of force is the same,

whether the remainder of the force has acted or not ; and,

therefore, the total change of motion is the aggregate

of the motions, which the several units of force would

have produced, if separately applied to the body at rest,

i. e. the motion, or change of motion, produced in a given

body, during a given time, is proportional to the force

applied ; and is, therefore, the adequate measure of that

force.

From observations of this nature, to which there is no

exception, the two following laws of motion are collected :

1st, Every body continues in its state of rest, or of uni-

form rectilinear motion, unless influenced by some external

force.

2nd, Every motion or change of motion produced in a

given body, during a given time, is proportional to the ex-

citing force, and in the same direction.

The first of these laws is called the law of Inertia ; the

second exhibits the measure of force, or the relation which

subsists between the force and the velocity : and the whole

theory of Dynamics is but the developement of these two
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propositions. Thus, from the second law of motion it fol-

lows, that if two forces are simultaneously applied to a body,

each of which is fitted to move it over a certain right line in

a given time, these lines being made the sides of a paralle-

logram, its diagonal shall be the space described by their

united actions. For the motion excited by each force,

being uninfluenced by the effect produced by the other, the

motions produced by each force acting separately, must

subsist together ; and, therefore, the motion of the body

must be that which arises from the composition of those

motions. It follows also, that if a force is applied to a body

in motion, and oblique to its direction, the effect shall be the

same as if it were applied to the body at rest, in conjunc-

tion with another force fitted to produce the previous

motion.

In the second law of motion the force was measured by

its effect produced by its action during a given time, and on

a given mass, and it is therefore requisite to show how

forces are to be compared when acting during different

times or on different masses. Now, it follows, from what

has been already established, that the motion, or change of

motion, produced in a given body by a given force, is pro-

portional to the duration of its action. For the time being

divided into any number of equal portions or units, the

change produced in any unit after the first, is uninfluenced by

the motion already produced : and the changes of motion in

all these equal portions of time, being equal and in the same

direction, the total change of motion must be equal to the

change produced in one of these moments multiplied by their

number ; therefore, t representing the number of units in the

whole time, v the velocity produced in that time, andy the

force, measured by the velocity produced by it in the unit of

'V

time, we have v ^::.ft, or f —~.-

To show how forces are to be compared by the effects
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produced on unequal masses of matter, it may be laid down

as a principle, that when two equal forces act on two equal

and contiguous masses of matter, during the same time, and

in parallel directions, there is no reason why a greater degree

of velocity should be produced in one of the masses, rather

than in the other, all influential circumstances being the

same. The masses, therefore, shall move with the same ve-

locity, and in parallel directions ; and there being no relative

motion of one from the other, they shall remain contiguous,

both during the action of the forces, and after they shall

have ceased to act. The bodies, therefore, may be sup-

posed to be connected together, so as to constitute one mass

equal to their sum ; and this, without inducing any change

in the velocity produced. Accordingly, whatever force is

required by its action during a given time, to produce a cer-

tain velocity in a certain mass, a double force will be re-

quired to produce, in the same time, the same velocity in a

double mass ; a triple force, to produce the same velocity in

a triple mass, &c. And generally, if m denotes the number

of units of mass in the body considered, and ify is the force

which in the time t, produces the velocity v, in the unit of

mass ; then the force F producing in the same time the same

velocity in the mass m, shall be mf. i. e. F= mf. But it has

been already shown, that/z: -. .'. f =: — . wherein the sym-

bols m, V, t, denote numbers.

In proceeding to connect the vari&us phenomena of mo-

tion with the forces, which are their efficient causes, we shall

begin by supposing the forces applied to a material point: or

if, in treating of this part of the subject, bodies are spoken

of, all the equal molecules of the body shall be supposed to

be influenced by equal forces, applied to them in parallel di-

rections. Therefore, in this first volume, where the subject

is thus restricted, our inquiries shall be confined to the con-

sideration of motions merely progressive. When the con-



THE MEASURES OF MOTION AND FORCE. 279

nexion between the phenomena and then* efficient causes is

so far understoocl, the student will be prepared to enter on

the subject of rotatory motion, or the effect of force, when

unequally applied to the equal portions of the same mass

;

which shall be treated of in the second volume of this work.
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SECTION 11.

OF FORCES PRODUCING RECTILINEAR MOTION.

1. When a material point is disturbed from a state of

rest by the action of a constant force, the increments of velo-

city generated in equal times are equal, i. e. the velocity of

the moving body is one uniformly accelerated. The velo-

cities thus generated, are as the number of those equal in-

crements, i. e. as the number of equal portions of time

counted from the beginning of the motion ; wherefore they

are proportional to the times in which they are acquired.

Accordingly, the accelerating forced*, being estimated by the

velocity generated by it in a unit of time, the velocity v, ge-

nerated in any time t, shall be expressed by the equation

v=fJ. (I)

To show the dependance of the space on the time and

velocity, it will be convenient to make use of the theorem

proved in Art. 3. of last section ; and to accommodate that

theorem to the present case, wherein the generated velocities

are as the times counted from the beginning of the motion,

the ordinates must be taken proportional to the abscissae.

Accordingly, if in (Fig. 133.) the point a corresponds to the

instant at which the velocity is cipher, and if the velocity ac-

quired in the time ab, is represented by the ordinate bc,

that which is generated in the time am, shall be represented

by an ordinate m\, which is to bc in the ratio of am to ab.

When such is the law of the ordinates, the line by which

they are terminated shall be a right line diverging from ab,

and the scheme a right-lined triangle. The areas of the si-

milar triangles amn, abc, being as the squares of the bases



OF FORCES PRODUCING RECTILINEAR MOTION. 281

AM, AB, or of the altitudes mn, bc, it follows, that the spaces

described with a velocity uniformly accelerated, and counted

from the beginning of the motion, are as the squares of the

times in which they are described, or as the squares of the

velocities acquired in those times. For example, the spaces

described in 1", 2", 3", 4", &c., counted from the beginning

of the motion, are as the numbers 1, 4, 9, 16, &c. And the

spaces described in the several equal moments are as the

odd numbers 1, S, 5, 7, &c., these being the differences of

0, 1, 4, 9, 16, &c. the squares of the natural numbers, in-

cluding cipher.

If the velocity is uniformly retarded, i. e. if it suffers

equal decrements in equal times, the velocities are propor-

tional to the times, counted to the end of the motion ; and

the ordinates, by which they are represented, are terminated

by a right line converging to the base line, by which the

time is represented. Therefore, the scheme given in (Fig.

loo.) will serve to represent the theory of uniformly retarded

velocities, by regarding a as the point of time at which the

motion terminates. Thus, the spaces described in the times

BA, MA, being proportional to the areas bac, man, are

as the squares of the times ba, ma, or of the initial velocities

BC, mn.

If a body moves with a velocity uniformly accelerated,

the space described, measured from the beginning of the

motion, shall be one-half of that which it would describe

with the last acquired velocity continued uniformly for an

equal time: the former of these spaces being represented by

a triangle, and the latter by a parallelogram of the same base

and altitude.

The following theorems are now established relative to

the effects of a constant force, on a body moved by it from a

state of rest.

1st, The velocities generated in any times, counted from

the beginning of the motion, are proportional to those times.
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2d, The spaces described, measured from the beginning

of the motion, are proportional to the squares of tlie times,

or of the acquired velocities.

3d, The space described from the beginning of the mo-

tion, is one-half of that which would be described with the

acquired velocity, continued uniform for an equal time.

The same theorems are equally applicable, when the ve-

locity is uniformly retarded ; the spaces and times being

measured to the end of the motion.

The first of these theorems is expressed by the equa-

tion (1), wherein^ denotes the force, or its measure, which is

the velocity generated in a unit of time; and t, as before, the

number of such units in the time of the motion.

The third theorem is expressed by the equation 2s = vt.

Whose terms being multiplied into those of eqviation (1),

there is

whereby the space is known when the time is given, and con-

versely. By multiplying the alternate members of the same

equations, there is

v''-=z2fs, (3)

whereby the velocity is known when the space is given, and

conversely.

If the body has an initial velocity v, that with which

it moves at the expiration of any time, t, is expressed by

the equation

v-v±ft. (4)

The force /, being taken with an affirmative or negative

sign, according as the velocity is accelerated or retarded.

The velocity, expressed by this equation, is the sura or dif-

ference of two velocities, of which one is the uniform ve-

locity Vy and the other the velocity ft, proportional to the

time t.
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The space described is the sum or difference of the

spaces which would have been severally described in these

two ways. That due to the uniform velocity v is had by

multiplying this velocity into the time ; and that due to the

uniformly accelerated velocity, by multiplyingy?, the velocity

generated in the time t, by half that time. The former part

is, therefore, v't, and the latter*^, which gives for the space,

the equation

s^v't±f^. (5)

Exterminating /, between equations (4) and (5), there is

%fs-{f— v'% (6)

Wherein f is to be taken with a negative sign, when the

motion is retarded.

J^. As near the surface of the earth, bodies descending

or ascending in the vertical, are known to be uniformly ac-

celerated or retarded, we have only to put for f, its proper

value in the foregoing formulse, in order to have the answer

to every inquiry, whether relating to the space of ascent or de-

scent, the velocity lost or gained, or the time required for this

purpose. Now, it is ascertained by experiments made with

pendulums, that in the latitude of 45°, a body, falling freely,

would describe sixteen feet and one inch in a second of

time, wherefore, the velocity acquired in the same time, is

that which w^ould carry the body through 32 feet 2 inches in

one second. In this case, the force is that of gravity at the

earth's surface, which it is convenient to designate by an

appropriate symbol. Thus /, being replaced by g, in the

preceding equation, they will be known to relate to bodies

ascending or descending, under the influence of the force of

terrestrial gravity.

If a body is projected vertically upwards with a cer-

tain velocity v\ the diminished velocity v, corresponding to

any time, or the time corresponding to that velocity, is given
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by equation (4), which as the value of g is negative, be-

comes v=iv' — gt. or v'— V =. gt. The same observations

apply when equations (5) and (6) are used to compare the

time or velocity with the height of ascent.

By making v — 0. in equation (6), there is for the whole

height of ascent, *= — . which compared with equation (3)

or s =. — . shevv's, that if the spaces are equal, the velocity

destroyed in one body is equal to that generated in the other :

or that the body, on its return to the surface of the earth, re-

gains precisely the same velocity with which it had been

projected upwards ; and it also shows, that if a body is

returned upward with the velocity acquired in the descent,

it shall rise to the same height from which it fell. Also, by

comparing equations (1) and (4), it will be seen that in the

same case the times of ascent and descent are equal.

Finally, from same equations it will follow, that if one body

were to begin to ascend, and the other to descend at the

same instant, the sum of the velocities in the ascending and

descending bodies, shall be constantly equal to that with

which the former had been projected upwards. For equa-

tion (4) gives for the velocity of the ascending body,

v=.v'—gt. and equation (1) for the descending body,

V -n gt. and the sum of these values is v' ; which is also the

relative velocity of one of the bodies from or towards the

other.

Let the numerical value of g be 32^, viz. the number of

feet through which a body would be carried in a second of

time with the velocity generated by gravity in that time ; and

let this value be assigned toforg, in those equations; then,

t shall denote the number of seconds in the time of the mo-

tion ; s, the number of feet in the space described ; and v

shall express the number of feet which a body moving uni-
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furnily with that velocity would describe in one second.

Accordingly, the equation between the time and velocity is

V - Sn" {a)

omitting the two inches in the value of g, for sake of sim-

plicity.

The equation between the time and space is

And that between the space and velocity is

V^Sy/s. OV.S--^. {c)

Thus, if the body falls through a space of 100 feet, by equa-

10"
tion [U) there is t"z=. -— —

2J". and by equation (e) v = 80

feet per 1".

3. When a body is in part sustained by an inclined plane,

the force by which it is solicited is had by resolving g, the

force of gravity, whose direction is vertical, into two forces;

one of them perpendicular to the plane, and the other in

the direction of the plane. These are j.g, j.g, in w^hich,

/, h, b denote the length, height, and base of the plane.

The force -j.g, is destroyed by the resistance of the plane,

but the force -jg, produces its full effect. And as this
V

value is the same in every part of the plane, the motion of

the body descending by this force is uniformly accelerated.

Accordingly, all questions relative to the motion of such a

body, are to be solved by makingy= -.g, in equations (1),

(2), (3). which then are

V = jg.t. (<0
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* - 27-^-^'' ^^^

v'^=z2^^.g.s if)

Equation {d) shews that the velocity acquired in any time,

by a body descending down an inclined plane, is to that

acquired in the same time, by a body descending freely in

the vertical, as the height of the plane to its length.

The space described in a given time, or the time of de-

scent through a given space, is had from equation (e).

Thus, putting / for s in that equation, we have for the time

of descent down the entire plane.

From which it appears, that the times of descent down

different planes, are proportional to their lengths, divided by

the square roots of their heights : and that if the heights

are equal, the times are simply as the lengths of the planes.

The height itself being included among those planes, it

follows, that the time of descent through the length of

the plane, is to the time of descending through its ver-

tical height as the length to the height. This appears

also by a comparison of the values of those times, viz.

l.'y -pj , and y ~^, which are in the proportion of / to h.

If it is required to ascertain the portion of the plane

through which a body would descend, whilst another body

falls down the vertical height, we have by the same equa-

tion,

gh

and putting this equal to — , which by equation (2), ex-
O
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presses the square of the time of the fall down the vertical

height, we have

Is zz. It , or, s zz—

.

t

showing that the portion of the inclined plane described in

the time of the fall down the vertical height, is a third pro-

portional to the length and height. Accordingly, if ab is

the inclined plane, and bc its height, (Fig. 135.) and CD a

perpendicular on the plane from the point c, the segment

BD shall be the portion required. For by similar triangles,

AB : BC : BD.

If a circle is described round the diameter bc, the several

chords drawn from b, such as bd, be, bf, &c. shall be de-

scribed by bodies descending along them in the same time
;

the time of descent for each being equal to that of the de-

scent down the vertical diameter bc. And the same thing

is true of the chords do, eg, fc, terminated by the other

extremity of the vertical diameter ; which is plain, by con-

sidering that these are the sam.e as to length and inclina-

tion, with the parallel chords bd', be', bf', drawn from

the upper extremity of the same diameter. The same thing

would also appear immediately from equation t =. I'y —

»

which shows that the times of descent down different planes

are as the lengths divided by the square roots of the heights.

But the chords of the arches of the same circle are as the

square roots of their verse sines, i. e. the arches being

measured from either extremity of the vertical diameter,

the chords are proportional to the square roots of their

heights.

The relation between the space and velocity is given by

equation {/). Wherefore, if the velocity acquired by de-

scending down the entire length of the plane is sought,

this is had by putting / for s in that equation, which then

becomes
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TIlis is also the expression for the velocity acquired by

falling down h, the vertical height of the plane; from M'hich

it appears, that the velocities acquired by falling down dif-

ferent planes, are as the square roots of their heights ; and

that if the heights are equal, the velocities acquired are also

equal.

It also follows, that the velocities acquired by falling

through the chords of the several arches of the same circle

are proportional to the chords themselves, the circle being

placed in a vertical plane, and the chords being drawn to

the extremity of the vertical diameter, for the velocities are

proportional to the square roots of the heights, and there-

fore to the chords.

4. There are several other constant forces in nature,

wdiich render this theory of practical importance. Of this

kind, is the force of resistance arising from tenacity. For

when a projectile penetrates a solid substance, the whole

depth of penetration, 5, being divided into an indefinite

number of equal parts ds, the tenacity in each of these parts

is the same, and the decrement of velocity produced by its

resistance is proportional to the time of its action, L e. to

the time taken by the projectile to pass through each of

these spaces ; and, therefore, the retardation produced by

any number of such parts, i. e. the retardation suffered by

the projectile in passing through any portion of the whole

depth of penetration, is simply as the time. This is con-

firmed by experiment, which shows, that the depths to which

a projectile penetrates a bank of earth, or plank of timber,

are as the squares of the velocities of projection. This re-

lation between the spaces described, and the velocities de-

stroyed, is the indication of a uniformly retarded velocity
;

and, therefore, of a constant force.—See equation 3.

This being admitted to be the nature of the force of re-

sistance arising from tenacity, it is easily seen why a bullet
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may be sent through a plank without overturning it; or

through a door without moving it on its hinges. For agree-

ably to the notation before adopted, \etf be the constant

force of resistance ; s the space through which it acts, and

which, in this case, is the thickness of the plank; i;' the

velocity of projection ; and v that with which the projectile

escapes from the remote surface ; there is by equation (3)

a constant quantity: wherefore, (v'—v) {v-\-v) is constant
;

shewing, that z;'—?; varies reciprocally as v~]^v. But v — v

is the velocity lost, and this is proportional to the motion

communicated. Wherefore, the greater the sum of the ve-

locities with which the projectile enters and escapes, the less

the motion communicated by it.

5. When the action is that of a variable force, the rate

at which the velocity increases or diminishes, being as the

acting force, is no longer constant, i. e. the velocity is no

longer vmiformly accelerated, or uniformly retarded : and

the change made in that velocity, during a given time, is no

longer the measure of the force acting at the beginning of

that time. If the force increases, the change of velocity is

greater than that due to the uniform action of the force

whose expression is sought ; and if the force diminishes, the

change of velocity is less than that by which the same should

be measured. Now, to find the expression for such a vary-

ing force at any one instant, it is to be observed, that the

change made in the velocity during any time t, is interme-

diate between the changes that would be effected in the

same time, by the forces acting at the beginning and end of

that time, I. e. putting v , v for the velocities at the begin-

ning and end of the time t, j' and / for the forces ; the

greater velocity and greater force being denoted by the ac-

cented letters : there is

f.t<.{v'--v)<f.t

i, e. V ~v is intermediate between /if and./'/. But by di-

u
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minishing the time indefinitely, the forcesy and/' at the

beginning and end of that time approach within any as-

signable difference ; and therefore, a fortiori, v ~v, inter-

mediate between them, shall differ from /if by a quantity less

than any assignable : therefore, denoting the indefinitely

small increments of the time and velocity by dt and dv,

there is dv :^fdt or

This theorem is demonstrated similarly for a decreasing

force.

(IjS cl~s

By Sect. 1. Art. 3. «;=—. and therefore, -^=:f7y=/.t//»

whence

in which the force is expressed as a function of the space

and time.

Also, multiplying equation (8) by the equation — r: z7»

we \\a.yef.dszzv.dv, or,

/=i^. (,0)

whereby the force is represented as a function of the space

and velocity.

The theorems contained in equations (8) and (10) may be

represented geometrically ; the former, by taking a base line

AB, with its subdivisions, to represent the time and its sub-

divisions, (Fig. lo6.) and erecting perpendiculars at indefi-

nitely small intervals, to represent the forces acting at the

several moments of time, corresponding to the points of the

base at which they are raised. Each areola shall then re-

present the increment of the velocity, or dv. gained in the

time represented by its base ; and, therefore, the area.
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standing on any portion of the base, shall represent the ve-

locity generated in the corresponding portion of time.

The force is never given as a function of the time, and,

therefore, the preceding construction is of no use but for il-

lustration.

The force is most commonly known as a function of the

space, and, therefore, equation (10) admits of a more useful

construction.

Let the same line ab represent the space described by

the moving body ; and the equidistant ordinates, the forces

acting at the points at which they are raised. Then, each

areola representing y*.J*, shall represent its equal, viz. v.dv.

which is half the increment on the square of the velocity.

Wherefore, the change on the square of the velocity, during

the motion through any portion of the space ab, shall be

represented by twice the area standing on that portion. And

thus, the determination of the velocity at any point of the

space, is reduced to the quadrature of curves.

The velocity being thus found as a function of the space,

ds
may be substituted for v, in equation y= -y-, whence, by in-

tegration, the time of describing any portion of the space is

found.

In general, it is to be observed, that each of the equa-

tions (8), (9), (10) involves three quantities : and that when

the force is given as a function of the space or velocity, one

of these may be eliminated, and an equation thus obtained

between the remaining two. This proceeding shall now be

illustrated by a few examples.

6. The force being supposed to be directed to a fixed

centre, and to vary as some power, n, of the distance from

that centre, let it be proposed to find the law of the motion

of a body ascending or descending in a right line passing

through that point.

In general, if x denote the variable distance of the body
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from the centre of force, then ds= — dx ; the body being

supposed to descend towards that point. Equation (10),

therefore, becomes vdv zz —fdx, or integrating

v''=:-2^fdx+c.

Now in the case proposed, if /j. denotes the intensity of

the force at the unit of distance, the value of the force at any

distance x, is /mx": Substituting this value of/ in the equa-

tion just obtained, it becomes

o 2nx"+^
,v^= ^^—j—he.

But v denoting the velocity at the distance x', we have

And subtracting,

w+1

This equation will equally serve in the case of a body

projected in a direction opposite to that of the force. For in

that case, the signs of dx and dv are together changed
;

whereby the differential equation remains unchanged.

The total height of ascent when the body is projected in

the direction opposite to that of the force, is had by making

vzzo in the last equation. The force at the distance .r'is ju.r'",

and if h denote the height through which the body must fall

under the influence of that force supposed constant, in order

to acquire the velocity v', we have

x"+^- x''+^= («+ 1 )x"h.

whence

1

x=x'[l+{?i+\)-^^.

The velocity being expressed as a function of the dis-

tance, the time is to be obtained from the formula
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To apply these results to different suppositions respect-

ing the law of the force.

For n— 1 . The equation between the space and velocity

IS

If the body descends from a state of rest, there is

The velocity with which the body arrives at the centre of

force is had by making :r=o. in the last equation, which

gives

The body having arrived at this point shall proceed in the

same direction to the distance x' with a velocity retarded in

the same manner as it was before accelerated : the velocities

at equal distances on both sides being equal. Having at-

tained to this distance beyond the centre of force, the body

shall return, describing the space 2x' with a velocity varying

according to the same law ; and thus is shall for ever go and

return through this space.

The time of descent to any distance x measured from the

centre of force is obtained by putting for v, its value in the

dx . . ,

equation v=.~—. which gives

dx
dtzz-

y/ ix[x"~—x-)

and by integration

1_

which needs no correction if the time be computed from the

instant when the body is at the extremity of its space of vi-

bration, i. e. when x=:x'.

t=—-. arc I cos. =—-,

j
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The whole time of descent is had by making x=o. which

gives cos.= o. and the arc a quadrant. Wherefore, putting

T for this time its value is given by the equation

T—

-

2ViU

This being independent of the distance from which the

body begins to descend, it follows that bodies arrive at the

centre of force in equal times from whatever distances they

may have fallen.

By reversing the general formula, we get

XZZ x'cOS.(y fjl.t).

for the distance corresponding to any time t ; and by sub-

stituting this value of x in the equation between the space

and velocity, we obtain an equation between the velocity and

time.

To represent these results geometrically, let a circle be

described (Fig. 137.) whose centre o is the centre of force,

and radius oa equal to .v ; and at the distance on, equal to

X, let the ordinate ?im be raised. It is obvious that nm =
y .v'^—.v^. so that

vzi'sj \x nm.

The velocity therefore varies as the ordinate. Also, the arc

Mn — a^'arcf cos. =—r)

;

and consequently

The denominator of this expression is the measure of

the velocity acquired in falling to the centre. Therefore,

the time is equal to that of describing the arc a;«, with that

velocity continued uniform.

Forces varying according to this law frequently offer
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themselves for consideration. Thus, if the density of the

earth were uniform throughout its mass, the force of gravity

beneath the surface would follow the law of the simple dis-

tance from the centre, i. e. at the distance of half the ra-

dius, the weight of the body would be reduced to half; at

the distance of a third part of the radius, to one-third, and

so forth. In this case, the gravity at the surface being de-

noted by g, there is g — /xr, and substituting in the expres-

sions already obtained, the velocity acquired in descending

to the centre is

V ^z V gr,

and the time is

rVi
The quantities so expressed are readily computed ; for

if in round numbers, r is 4000 miles, or 21,1^0000 feet, g
being 32.

gr — V 675,840000. feet = 26000 feet. q.p.

i. e. about five miles. Accordingly the body would pass

through the centre, moving at the rate of about five miles

per 1".

For the time of descent to the centre, we have tt =
22
~-.q-p- and therefore,

^_^./r 11. /21,12000(r ^,,, ,T--y- =—

V

.^^
= 21 Y nearly.

The force of elastic bodies is known to follow the law of

the distance from the point of rest. Thus the middle point

of a musical cord is accelerated or retarded by a force vary-

ing as the distance from the middle point of the space de-

scribed by its motion, or from the point of rest. The

theorems here established may, therefore, be applied to the

solution of questions relative to the motion of such bodies.
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For example, let a bow be supposed to require a weight

of 100 pounds applied to its string, to draw it through a

space of '30 inches, and that the arrow weighs one ounce
;

the velocity with which it is discharged is had by putting

their particular values for x' and fx in the equation v = a;' Vi".

Now the force at x', i. e. fix' is 1600 times the force of

gravity, or 1600x32. and x'zz2i feet. Therefore Z7= 350

feet per 1". nearly ; or about the fifth part of the velocity

with which a ball is discharged from a well loaded musket.

If the force varies inversely as the distance from the

fixed point, or mzi — 1. the solution given above fails; and

we must have recourse to the general equation

?;2 = - '2lfdx+ c.

From which, by substituting for/ its value -, we find
X

v^ — — 2fl\og.X + c.

And

v"^ = — 2m.\og.x + c.

Wherefore, the law of the movement is given by the

equation

v^ — v'^ zz 2/u.log.—

.

The body being projected in a direction opposite to that

of the force, the total height of ascent is had by making

V — 0. which gives

v^ :r 2u.log.—7.

whereby it appears that the body under the influence of a

force acting according to this law, cannot be sent to an infi-

nite distance, by any finite velocity of projection.

If the body descends from a state of rest, the expression

x'
for the velocity is given by the equation v- — 2/u.log. — . At
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the centre of force, a; — 0. and, therefore, the velocity at

this point is infinite.

If the force varies inversely as the square of the distance,

then, nzz — 2, and the equation expressing the relation

between the velocity and space is

\X X J

If the body descends from a state of rest, v — 0. and

-y^ — 2|u( yj. From which it appears, that in the de-

scent, the velocity varies as the square root of the space

described, divided by the square root of the distance from

the centre.

For the centre, x znO. wherefore, the velocity at the

centre is infinite.

By substituting for v, its value in the equation v — 7-,

there is

x^.dx xdx
dt- —

X X

and integrating,

/ x' ^ , , ^A , f 2x—x'\)
r= \/ -^ < [xx —x'^)" -^^x arc ( cos. =. j—

J
> .

which requires no correction.

To represent these things geometrically, let a be the

point from which the body begins its descent towards o, the

centre of force, (Fig. 138.) and let the line ao be bisected at

c: then a:'=: ao, and the body being at m, x—^x'=cm.
Moreover, if a circle is described with the centre c and ra-

dius CA, and an ordinate mn, is raised at /«, we shall have
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x' f X--\x \ 1— arc ( COS. iz. —
^

'

,

- 1 r: arc. aw. and {xx — otP)- =:mn,

Now, ^ Ao X arc An= sector caw ; and ^ ao X mn = triangle

cno. Wherefore, the time of descent to any point as 7)1, is

proportional to the mixed-Hned area oa«, contained by the

right Hnes oa, g;?, and the circular arc Afi.

This construction is given by Newton.

When the body arrives at the centre, there will be xzzo.

and

' / '^TT X y X

which shows that the times of descent from different dis-

tances to the centre of force, vary in the sesquiplicate ratio of

those distances.

10. To determine the law of the vertical movement of a

body in a fluid medium. The fluid being supposed to be

without tenacity, the resistance opposed to the motion of the

body shall be measured by the motion communicated to the

fluid, i. e. by the quantity displaced in a given time, multi-

plied by the velocity imparted to it. Wherefore, the resis-

tance is as the square of the velocity, and may be denoted by

mv^. the coefficient 7n being the resistance to the body mov-

ing with a unit of velocity. Its value depends on the form

of the body and the density of the medium, and is, therefore,

constant, when both of these are given. Moreover, in pro-

blems of this nature, the spaces described being small, in re-

lation to the distance from the centre of the earth, the force

of gravity shall be supposed to be constant.

If the body is projected vertically upwards, its motion is

retarded, both by the force of gravity and by the resistance

of the medium; and the whole force then acting on the body

is —{g+ mv-). But if the body descends, gravity acts as an

accelerating force ; and this being diminished by the resis-
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tance of the medium, the force with which it is effectively

accelerated, is g— mi^.

To begin with the case of an ascending body, we have

fzz — (^ + mv^). and this value of the force being substi-

tuted in the general equations, filx rz v.d.v, fdt — dv, we

have

, v.dv - dv
dx — ^ -;s. dt — —

g-[-mv^'
""

g-\-7nv^'

These equations being integrated, give

2fnx = c— log. {g-\- mv^).

V tug. t :zic—a.rc (tan. -zz ^— .vy

The constants are determined by observing that for

x-ziO, or for t — O, the value of 2; is the velocity of projection.

Wherefore, putting v, as before, for that velocity,

c = log. {g 4- mv~). c'zi arc (tan. — / ~-^'j'

Wherefore,

2mx zzlos.l- 7 I.

\g+ mv J

V t7igJ=i arc (tan. =: V ~.y'j — arc (^tan. = y —.v).

These two equations contain the complete solution of the

problem for an ascending body, since by exterminating v,

they give an equation between the space and time.

For the total ascent, v := 0. Accordingly putting x' for

this height, and t' for the time of total ascent, we shall

have

, 1 , /, mv~\
x=z-~.\og. (1 H j.

2?>i \ g J
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When the body arrives at the highest point of its flight,

it shall return as from a state of rest ; and the force with

which it is accelerated in its descent being g— mv^, the

equations by which this part of the problem is to be solved,

are

,
v.dv J, dv

ete=r 5. ar = o^

g—mv^ g—mv^

The former of these, by integration, gives

^mx —c — log. {g — mv^). (1 1)

And since x is now measured from the point where t; = 0,

c = log. g. Wherefore,

2mx = \og.(—^—X° \g—mv^J

To prepare the second of the differential equations for

integration, it may be put in this form,

_ 1 t dv dv -^

^Vg K. Vg+ v. \^ tti V

g

—vVm S

which, by integration, gives

2Vmg.t = \og.S^^I±L^l. (12)

t Vg— V. V j}i ^

This requires no correction, since ^ := 0, gives v zz 0.

For X infinite in equation (11), or t infinite in equation

(12), there is

^ m
This, therefore, is the limit to which the velocity of the de-

scending body always approaches, without ever attaining to

that value.

When the body thrown upwards with the velocity v',

returns to the point from which it was projected, it is evi-

dent that it does not regain the whole of this velocity, inas-
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much as in each point of the space, the force which acce-

lerates the motion in the descent, is less than that by which

the motion upwards was retarded. These velocities are

compared by equating the values of x and x, as given for

the body in its ascent and descent. This gives

€±^'=-^. and .'=-£2^,.
g g— mv g+ mv^

Wherein mv'~ is the resistance encountered by the body

moving with the velocity of projection. The same state-

ment will serve for comparing the velocities of ascent and

descent at any point, by putting in place of v', the velocity

of ascent at that point.
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CTION III.

OF FORCES PRODUCING CURVILINEAR MOTION.

1. When a body moves in a curve of any kind, the direc-

tion of its motion is continually changed, which cannot be,

unless the body is under the influence of a force or forces

acting in directions different from that of the motion. Now
it is the business of mechanical philosophy to connect these

forces and movements, so that each may be ascertained, as

to its intensity, direction, and laws, when the other is given.

By those who first cultivated this branch of mechanics, such

questions were managed by resorting to the indefinitely

small movements successively compounded, and the forces

by which they were produced. Thus, if ac (Fig. 139.) is

the path of the body; am the portion of the tangent at a,

which would have been described in a unit of time with the

velocity at that point ; and ao, the line actually described

in that time : then, an, equal and parallel to mo, is the space

which would have been described, had the force been ap-

plied to the body at rest. Moreover, the unit of lime, and

therefore the lines ao, an, being taken indefinitely small,

the force during that time is regarded as unchanged in

quantity and direction : and, consequently, 2an, or 2mo, is

the measure of the velocity due to the action of the force

;

and, therefore, also the measure of the force itself. In the

same way, am' being the portion of the tangent to the curve

at a' which wovdd be described in a unit of time with the

velocity at that point ; and a'o' the space actually described

in that time ; twice w^'o', or twice a'n', to which it is equal

and parallel, is the measure of the force at «'. xiccordinglj-,
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the deflecting force at «, is to that acting at a', as 7no to

m'o', the times of describing the elementary arcs ao, a'o,

being equal ; or if the times are unequal in any ratio, the

forces are as the same lines divided by the squares of the

limes, agreeably to what has been established relative to

right lined motions produced by the action of constant

forces. Now, when the curve is given, as also the law of

the motion in that curve, it is the business of geometry to

ascertain the relation of the lines mo, m'o' , and, therefore,

of the forces measured by those lines; likewise, when the

velocity and direction of the movement at any one point of

space are given, together with the intensity and law of the

force by which the body is subsequently influenced, it be-

longs to the same science to investigate the nature of the

curve or trajectory. The former of these was called the

direct, and the latter the inverse problem in this branch of

mechanics.

2. This method, which was somewhat circuitous, has

given place to others, according to which, the forces and

movements are reduced to rectangular or polar coordinates.

Of these, the former, as being more simple as well as more

extensibly applicable, is that which shall be treated of in

the present section. In this method, as already intimated,

the forces, whatever their number or directions, are reduced

to three forces acting in directions parallel to three rectan-

gular axes, after the manner explained in ' Statics,' Sect. I.

Art. 9, &c. Likewise, the material point being projected

on the same axes, those projections are regarded as so many

points which accompany the material point in its motion

through space. In this way, the movement of the material

point is resolved into three movements, which are those of

its projections : and as the movement, parallel to any one

axis, is not influenced by the forces parallel to the other

axes, it follows, that each of the decomposed motions may

be regarded as being influenced solely by the force in its



304 DYNAMICS—SECT. III.

direction ; whereby the theory of forces producing curvi-

linear motion, is reduced to that of three forces producing

so many right hned motions.

3. To ilhistrate this method by example, let a body be

supposed to be projected in a line making any angle with

the vertical, whilst it descends in the vertical with a velocity

uniformly accelerated.

Let BD (Fig. 140.) be the space that would be described

in a given time with the velocity of projection ; and ba, taken

in the vertical, that described in the same time, with the ve-

locity uniformly increasing. Then at the end of the same

time, the body shall be brought by the compound motion to

c, the extremity of the diagonal of the parallelogram, whose

sides are bd, ba. Dividing bd into a number of equal parts,

BO, oo', do", o"d, the times of reaching the points o, o', o", d,

with the velocity of projection, are as the numbers 1, 2, 3, 4,

whilst the spaces on, o'n, o"n", do, described in the vertical,

are as squares of those numbers; i. e. as 1, 4, 9, 16. And
such, generally, is the relation between the lines on, o'n

,

o"n", &c. and the lines bo, bo', bo", &c. or between b;w, bw/,

B»z", &;c. and mn, m'n', m'n , &c. the former being as the

squares of the latter ; wherefore, the curve described is the

parabola. Now, without adverting to the properties of this

curve, or embarrassing ourselves with the consideration of

the compound motion, all the problems respecting the time

of flight, the range, the height of ascent, &c. may be solved,

by considering the motions as subsisting separately, and de-

termining the question for each of these movements.

It is evident that the motion shall be in the plane of the

rectihnear movements, seeing that there is no reason why the

projectile should deviate from this plane, to one side rather

than the other. Wherefore, it will be sufficient to refer to

two axes in that plane, and for the sake of simplicity, they

may be drawn through b, the point of departure : one of

them vertical and the other horizontal.
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The uniformly accelerated velocity, being parallel to the

axis of t/, is not to be resolved : this velocity being propor-

tional to the time, may be denoted by gt. The velocity of

projection, when oblique to the horizon, is to be resolved

into tvro, of which one is vertical, and the other horizontal.

Let v' denote this velocity of projection; and e the elevation

of the line of direction, or the angle which it makes with the

horizon. Then, 2;'.cos.e, v'.sin.e, are the velocities of pro-

jection estimated in directions parallel to the axes of x and

1/ respectively. The motion parallel to the axis of x, is,

therefore, v'. cos. e : and the vertical movement of the pro-

jectile being the difference between the uniform motion of

projection upwards, and the uniformly accelerated motion

downwards, is v. sin. e—gt.

The altitude to which the projectile ascends, and the

time in which it returns to the axis of a:, depend solely on the

vertical movement. These are given by equations (4) and

(6), by making v — Q, using g with a negative sign, and

changing v' for v.sSn.e. In this way, the latter equation

gives for the height of ascent,

and the former, for the time,

_ v'. sin. e

~ g

Twice this time is that of the ascent and subsequent descent,

or as it is commonly called, the time of flight.

To find the horizontal range, the horizontal velocity is to

be multiplied by the time of flight. Wherefore, putting r

for the horizontal range, its value is given by the equation

, St?', sin.e «j'^. sin. 2e
R z: r . cos.e X =

.

g g

Hence it appears, that when the velocity of projection is
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given, the amplitude or range varies as the sine of twice the

elevation: and that it is, therefore, a maximum, when the

elevation is 45°. Also, that for two elevations which are

complements, one of the other, the horizontal ranges are

equal.

The place of the projectile for any time /, is found by as-

certaining its coordinates for that time. The horizontal ve-

locity is uniform ; therefore, xzzt.v cos. e. But the ordinate

y, is the difference of the spaces described by tw'o vertical

motions. One of these motions, viz. t;'. sin.e, is uniform;

and, therefore, the space described by this motion is t.v. sin. e.

The other is the uniformly accelerated motion, whose value

for any time t, is gt, and the space described by this motion

is ^^. Accordingly,

ij-t.v.sm.e-^-.

If the problem is to find the velocity of projection, or the

elevation requisite for striking a given scope, it is evident

that the value of t must be the same in the equations

X :=: t.v\ COS. e. and y= t.v'. sin. e-——-. Wherefore, the va-

lues of t, as given by those equations, are to be put equal,

i. e. t is to be exterminated between them, whence
o

•^ 2y . cos.^e

This equation becomes somewhat more simple, by put-

ting for v'^, its value, given by the equation v^z:z2gh; in

which, h denotes the height from which a body should fall,

in order to acquire the velocity v, or, as it is called, the

height due to that velocity. Making this substitution, the

equation is

y ~ A'.tan.e -rz 5—.
4A.COS. e
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This is the equation of the curve described by the projectile:

from which it appears again, that the curve is a parabola,

whose axis is parallel to the axis of y. Also, that 4A.cos.V,

is its principal parameter ; and 4A the parameter of the dia-

meter passing through the point of projection. By this

equation, any one of the four quantities, x, y, e, h, is ascer-

tained when the remaining three are given. Thus, if the

scope is given by its coordinates x, y \ and if the angle of

elevation is also given, or e= e'; these values being substi-

tuted in the equation of the curve, we have

h -

or, because h zz -—

.

4.C0S.V(.r'. tan.e—y')'
,2

vzz
cos.e'-v/ (^'. tan.e'

—

y)

If y — x'. tsiu.e, the value of v is infinite ; and when y' is

greater, the value of v is impossible : which is, indeed, evi-

dent, inasmuch as the curve must fall below its tangent.

If it is required to find the elevation, in order to reach a

given scope with a given velocity of projection, it will be con-

venient to express cos. e by means of tan. e.

Substituting in the equation of the curve for —, its
cos.'e

value, which is l-}-tan.^e. and solving for tan. e, there is

tan.e n: -,
•

X

From which it appears, that the scope cannot be reached

with the given velocity of projection, if 4////'-^-^^ exceeds 4/i'\

i. e. if h' is less than — ^^. But that when h' ex-

ceeds this value, there are two values of e, between whose

2/1 .

tangents the quantity —- is an arithmetical mean.

x2
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4. The case here adduced, when treated as above, affords

an exemphfication of the use of the principles stated in the

preceding Art. ; and as in this case, the law of the motion

in each of the axes was given, there could be no difficulty in

finding for any given time, the place of the body, its velocity,

or the direction of its motion. But in most cases, the direc-

tion of the force, with respect to the axes, is continually

changed; and in such cases, it is evident, that the reduction

of the forces and motions to the same axes must first be as-

sumed, in order that by the connexion between them, we may

proceed to the discovery of either from the other.

The relation between the force and velocity in each axis

is expressed as follows :

The velocities in the directions of the axes are -j-, -/»
at at

— . Wherefore, putting, as usual, x, y, z for the sum of

the forces in the axes of a:, y, and z respectively, we have

by equation (9) of preceding section.

d^x _ d^y__

dt^
~^'

dt"^
~ "

dta-^' dF = Y. -l^-"^' (1)

When the motion is given, those into which it is resolved,

and, therefore, the first members of these equations, are

given ; whence the resolved forces are known, and, there-

fore, their resultant, which is the square root of the sum of

the squares of its rectangular components. And conversely,

when the force is given, those into which it is resolved, i. e.

the second members of those equations are given ; and,

therefore, the first members, which by integration give the

resolved movements ; and these, being compounded, give

the velocity in absolute space.

To find the path of the motion, equations (1) are to un-

dergo a second integration, and at each integration there

are introduced three constant quantities : those introduced
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by the first integration, are the resolved velocities corres-

ponding to certain coordinates, and expressed as at the be-

ginning of this article ; and the constants, introduced by the

second integration, are those coordinates themselves. The

times being eliminated from the three integrals, and the

forces being functions of the coordinates sc, 2/, and z, the two

resulting equations express the relations among those coor-

dinates, and are therefore the equations of the curve. The

three differential equations are requisite, when the path of

the movement is a curve of double curvature ; but when the

motion is limited to a plane, that plane may be taken for the

plane of the axes of x and //, and then 2 zizO, z — 0, and the

differential equations relative to the other two axes being

integrated, and t eliminated, there results a single equation

between the coordinates a: and ?/, which is that of the plane

figure.

3. To proceed according to this method, let the equa-

tions (1) be multiplied, the first by d.Vy the second by diy,

and the third by dss, we have

dx.d'^x , dyuPii , dz.cPz

Adding these equations, there is

-^
.,

-^ ^
'= x.dx 4- Y.df/ + z.dz. {2)

1 he first member of this equation is ^-j-^ =

d(ds^) ds.dh „„ p

ds.u^s—'y^- — xdx -\- Ydy 4- "idz. (3)

From equation (3) some important conclusions are de-

rived. For putting it in this form,

d's dx . f/?/
,

dz ....
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As the coefficients -r-, -/, —r, are the cosines of the angles
ds' (Is ds

^

at which ds, the element of the curve, is inclined to the

axes of X, y, and z, respectively, it follows that the second

member of this equation expresses the sum of the forces,

reduced each to the direction of the tangent. Accordingly,

d's
putting s for the tangential force, the equation is —^ "=.

dx , dii
, dz ^_„ . , ,

X.-—f- Y. -f^ 4- z. -7- =:s. Whence it appears, that the tan-
ds as ds fi

'

gential force is expressed by the second differential coeffi-

cient of the arc with respect to the time ; an expression

strictly analogous to that of a force producing right lined

motion.

dids'^)
Equation (3) put in this form —Vr^ — 2.(xc?a; + \dy \-

zdz.) gives by integration,

t'^-2^ (yidx + Ydy + '^dz) + c. (5)

The value of the quantity within the sign of integration is

s.ds. and this value being substituted, the equation is

'v^-2^s.ds-^ c.

From which it follows, that if the resultant of the forces is

resolved into two, viz. in the direction of the tangent, and

in that of the normal to the curve, the velocity shall be

affected solely by the tangential force : and as this force can

have no effect in changing the direction of the motion, it

likewise follows, that the change of direction is effected, ex-

clusively by the normal force.

The last equation is particularly useful when the tan-

gential force is given as a function of the arc, of which a

remarkable example will occur when constrained motion is

treated of.

When the quantity xdx + ^'dy + zdz is an exact differ-
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ential of a function, (p{x, ij, 2;), of the three coordinates,

equation (5) becomes

v'-2(j>{x, y, ^) + c;

And if y denote the velocity at any point of the trajectory

whose coordinates are x', ?/, is',

Wherefore,

In this case, then, the difference between the squares of

the velocities in any two points of the path, is independent

both of the form of the curve between those points, and of

the time in which it is described ; or in other words, the

velocity being given for any point of the path, it is also

given for any other point ; and this, independently of the

figure contained between those points, and of the time taken

to describe it.

This will be the case when the acting force is directed

to a fixed centre, and is at the same time a function of the

distance from that centre ; or when it is the resultant of two

or more other forces of this nature : and then the expression

x.ds-{-Y.di/-\-z.ch. is reducible to another, wherein the va-

riables are separated.

Ifp denote the distance of the moving point from one of

these fixed centres, and a, j3, 7, the angles contained by

(fp
that line with the three axes, -4- will be the cosine of the

as

the angle contained by the same line with the element of the

curve ; and ^-, ~, -^, being the cosines of the angles made
'

ds' ds ds'
*= ^

by the element of the curve with the three axes, there is

dp dx
,

^dii
,

d^
-=cos..^+cos.|3^+cos.T,^.

Let both members of this equation be multiplied by vds, p
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denoting the intensity of the force directed to the fixed

centre, and it becomes

There will be a similar equation for each of the other forces,

so that we have by addition

li{pdj))zzdxs(pcos.a)-{-di/'^{FCOs.i^)-\-dzs(FCOS.'y).

the symbol s denoting the sum of all the products similar

to those to which it is prefixed. But

2(pcos.a)= x. s(Pcos.]3)=Y. s(pcos.7)=:z,»

so that

xdx+Ydy+ zd%— s {vdp).

It appears then that when there are several forces di-

rected to fixed centres, which are moreover functions of the

distances from those centres, the velocity being given for

any one point of the path, is given for any other point ; and

this independently of the form of the curve described be-

tween those points, and of the time taken to describe it.

If there is but one such force acting on the body, the

proposition is true, not only for the transit between two

given points, but also between two given distances from the

centre of force. For in this case,

v'-=z2\Y.dp+c—2(l,{p) + c,

From this equation it appears, that if two bodies, influ-

enced by the same accelerating force directed to a fixed

point, have equal velocities at any equal distances from that

point, their velocities, at any other equal distances, shall be

equal, i. e. several spherical surfaces being described round

the centre of force, if the bodies have equal velocities at any

one of those surfaces, they shall arrive at any other of the

surfaces with equal velocities.

The geometrical proof of this proposition is exceedingly

simple. For let ds, ds' be the elements of the two curves

contained between the spheric surfaces, whose radii are r.
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and r+ dr. The tangential forces are F-4-. andp-/-.. i.e. in-° as as

versely as the elements ds, ds. But the changes made in

the squares of the velocities by describing the spaces ds, ds'

are expressed by the double products of those forces and

the arcs, or by 2vdp, and are the same for both curves.

This is the 40th Prop, of the first Book of the Principia

Math, of Newton.

rpX n^ll Cp!S
4. Having the equations -^-= x.t/^ —;-—Y.dt. ——=z.dt,^ ^

dt dt ^ dt

if the first is multiplied by y, and the second by x, we have

by subtraction,

In the same manner we obtain two other equations

z.^x—x.d^s;

dt

y.dP^z— z.d^y

— {ssx~xz)dt.

dt
-iy^-^^)dt'

The first members of these equations are the differentials

of the quantities

x.dy — y.dx z.dx — x.dss y.dz — %.dy

Jt
*

di
'

dt
*

Wherefore,

x.di/ — ^^.dx ^ ,

z.dx — x.dz ,
, C , s Jzz c -\- \ [zx — xz)dt.

dt

~di

'^- _—^n c"+
\ {yz - zY)dt.

dt/ doc
-j~ and — being the velocities of the moving point, estimated

in the directions of the axes w and x, a: -/ — 7/
—

- is the mO"•^
dt ^ dt
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ment, with respect to the axis of z, of the quantity of motion

acquired at the end of the time t. The first members of the

other two equations, in hke manner, are the similar mo-

ments with respect to the axes of y and x. On the other

hand, since X(//, Ydt, zclt, are the quantities of motion im-

pressed by the acting forces during the time clt, it is obvious

that the quantities under the sign of integration are the mo-

ments of these elementary motions taken with respect to

the same axes ; and the preceding equations show in what

manner the moments of the velocity acquired at the end of

any time, are made up of the moments of the velocities

engendered during each instant by the action of the moving

forces.

But the first members of the preceding equations bear

another signification. We may suppose the elementary arc,

ds projected on the planes of the axes: and the reasoning

concerning all these projections being the same, it will be

sufficient to consider the projection on one of those planes,

which may be that of xy. Accordingly, let o be the origin,

(Fig. 141.) OA the axis of x, and ob the axis of //, and 7nn

the projection of the elementary arc on the plane of these

axes. Then, ma, me, nh, nf, being perpendiculars on those

axes, and the former being produced to meet the latter pair

at c and h, we shall have oa = x, oe r= y, mc z= dx, mh — dy.

Wherefore, xdy — ydx, is the diiference of the rectangular

parallelograms fm, mh. But the point o, lying within the

angle ema, contained by the sides of the parallelogram lie,

the difference of the rectangles mf, mh is eqvial to the pro-

duct of mn, the diagonal of the parallelogram he, into its

perpendicular distance from o, * Statics,' Sect. 4. Art. 2.

or to twice the area of the ti'iangle mon. But this triangle

is the projection of that whose base is ds, and whose vertical

angle is at o ; wherefore, xdy — ydx expresses twice the

projection of that area on the plane of xy. The same rea-

sonings apply to the other equations; and we learn that the
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numerators in the first members of the preceding equa-

tions are double of the projections, on the three coordinate

planes, of the elementary area described by the moving

point in the time dt.

Or thus : putting r for the distance of the origin o, from

the projection of the material point on the plane of x, y\

and w for the angle made by the line r, with the axis of a:,

we have :r =: r.cos.w. ?/z=r.sin.w. whence,

dx zz — r.sin.(t).c?ct>. dy — r.cos.w.c/w.

and therefore,

x.dy — y.dx =. r^.du).

But r.d(o is the circular arc, described with the centre o

and radius r ; wherefore, r-.doj is twice the projection of the

triangular area whose base is ds, and whose vertex is at the

origin o.

When the forces acting on the point are reduced to a

single force directed to the origin, the moments of this

force, taken with respect to that point, vanish, and we have

XY — yxzz 0, zx — xzzz 0, yz — zy — 0.

Consequently, the equations above obtained are reduced to

xdy — ydx z=: cdt,

sdx — xdz zi cdt,

yd% — %dy zz c'dt.

The projections of the elementary areas described during

the time dt are therefore constant, and the areas described

in any finite time are proportional to that time. Recipro-

cally, if the areas are proportional to the times, or the latter

equations fulfilled, the former must hold good also, and the

direction of the force must pass through the origin.

Let the equations last obtained be multiplied, each by

the variable which it does not include, and then added
;

there is

cz + c'y + c"x — ^'
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which is the equation of a plane passing through the origin.

This result, therefore, shows that a body urged by a force

tending to a fixed point, shall move in a plane passing through

that point.

5. It may be satisfactory to the student to see these

things proved geometrically ; wherefore, let c be the centre

of force, (Fig. 14^) ; o the material point, whether moving in

the plane oi xy, or projected on that plane; and let om be

the line it would describe in the time dt, were it not in-

fluenced by a force. On this supposition, the triangle ocm

would be described by the radius vector in the time dt. But

if at o it is urged by a force directed to c, which would carry

it through the space on, in the time dt, the line described by

the compound motion in the time dt shall be oo, the diagonal

of the parallelogram, whose sides are otn, on ; and the area

described by the radius vector shall be the triangle oco'.

But mo' being parallel to oc, the triangles oco', ocm, standing

on the same base oc, are equal; If the material point were

to receive no other impression, it would proceed in the line

go' produced, describing in the time dt the space o'm' equal

to oo'; but if at o' it receives an impression, which in that

time would carry it through the space oV, the line de-

scribed in the time dt shall be o'o", the diagonal of the pa-

rallelogram whose sides are oW, oV; and the area de-

scribed by the radius vector shall be o'co". But the trian-

gles o'co", o'cm, standing on the same base, and between the

same parallels, are equal : and as o'cm'-zz oco', it follows, that

oco — oco

.

The triangular areas described round the centre of force

in the equal moments dt, being thus proved to be equal, it

follows, that the areas described in any portions of time

whatsoever, are proportional to the times. Conversely, if

the areas described in the time dt are equal, the area

o'co"zz area oco'— area o'cm. Wherefore, the triangles o'co"

and o'cm' standing on the same base, being equal, they must
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be within the same parallels ; i. e. m'o" must be parallel to

o'c, and, therefore, the Une oV, in which the force is directed,

must pass through the point c. The equable description of

areas round any point is therefore the indication of a deflect-

ing force, whose line of direction constantly passes through

that point.

Whilst the force is directed to the same point c, the

figure of the trajectory must be a plane ; for the line od\

(Fig. 142.) is in the plane of o'm' , o'n' ; i. e. in the plane of

oo' y o'n', or of oco'; and the same thing is shown, in the same

way, of the remaining sides of the polygon. Moreover, in

this case, the areas described in equal times, dt, being equal,

the velocities are inversely as the perpendiculars from the

centre of force on the sides of the polygon. Wherefore,

when the polygon terminates in a curve, the velocities at dif-

ferent points are inversely as the perpendiculars from the

centre of force on the tangents at those points.
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SECTION IV.

OF CENTRAL FORCES,

1. When a material point is urged by a single force

tending to a fixed centre, which force is represented by

some function of the distance from that centre, the general

formulae, given in the preceding section, are susceptible of

simplifications ; which, on account of the importance of the

case, merit a distinct consideration.

It has been already shewn (Sect. 3. Arts. 4. and 5.) that,

in the case under consideration, the point will move in a

plane passing through the centre of force, as indeed is appa-

rent ; for every thing being similar on both sides of the

plane drawn through the direction of the initial velocity and

the fixed centre of force, there is no reason why the move-

able should deviate from that plane to one side rather than

the other; that plane will, therefore, contain the path of the

moving point. If then we take this plane for the plane of

xy, we may dispense with the third of our fundamental

equations, (1.) of last Sect, and the motion of the point will

be given by the two equations,

f- (•)

2. As the force by which the moving point is urged

varies as a function of the distance of that point from a fixed

centre, it is natural and convenient, that its position be re-

ferred to that centre by means of polar coordinates. For

this purpose, the equations above may be transformed as
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follows : if R denote the central force, and w the angle made

by its direction with the axis of x, we shall have the equa-

tions

X = — R.cos.w. Y = — R.sin.w.

in which the force r has an opposite sign to that of x and r,

inasmuch as its direction is toivards the origin. If now we

multiply the former of these equations by sin.w, and the

latter by cos.w, and subtract, we have

Y.cos.w — x.sin.w = 0.

Again, multiplying the former by cos.w. and the latter by

sin.w, and adding, we find

Y.sin.w 4- x.cos,(t> + R = 0.

It now remains to substitute for x and y their values ex-

pressed by polar coordinates ; these may be obtained as fol-

lows : if r denote the distance of the moving point from the

origin, or radius vector, we have

X = r.cos.w, y — r.sin.w

;

differentiating these equations twice, all the quantities being

considered as variable, we find

d'^x — f/V.cos.w — 2t/r.f/a>.sin.(u — rc^w^.cos.w — rdPio.sm.u),

d^y=. cPr.sin.w -f 2dr.do).cos.ii) — rdby^.sm.cj -f- rd^oj.cos.w.

Therefore, dividing by dt-, we have, by equations (1) and

(2),

/d^r db)S (^dr dw
,

tf^wN .

"

=

Kif -'wn-'- - \^Tf7t
+

•••s-J""-"-

/cZV dh)\ . ,
/^dr dh)

,
d-w\

Y = —rrr — r.-^T] sm.w + ( ^-77.-7-+ r.-7,-)cos.w.
V dt^ dt'J \ dt dt dt' J

Substituting now these values of x and y in the equations

above, we obtain the equations

2^.^4-r.^r = 0. (3)
dt dt dt^ ^

'

dh- d(x)^
, n tA\
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We have thus transformed equations (1) and (2) mto two

polar equations, which we shall use hereafter in determining

the motion of the point.

3. If we multiply equation (3) by r.df, it becomes

2rdr. —+ r^. —r-- d. [ r^. i- ) = 0.
dt dt \ dt I

the integral of which is

..4-=. (5)

Now, rVa> is twice the differential of the area described

round the centre of force ; it follows, therefore, from this

equation, that the increment of the area described in a given

time by the moving point round the centre of force is con-

stant ; or, that the areas described are proportional to the

times of their description, as has been already shown in the

preceding section.

Equation (5) may be thus written,

disi_ c

from which we conclude that the angular velocity of the

moving point varies inversely as the square of the distance

from the centre of force ; -j- expressing that angular ve-

locity.

4. The integral of equation (4) may also be obtained

with the aid of equation (3). For if equation (4) be multi-

plied by dr, and equation (3) by rdw, and the results added

together, we shall have

dr.—+ rdr. -^ + r^du.. -^ + ^dr = 0.

the integral of which will be

h being the arbitrary constant.
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From this equation we immediately obtain the velocity of

the moveable at any distance from the centre of force : for,

observing that dr'^+ r'^dio'^ = ds^, equation (6) may be written

ds^
But^ = «)^, V representing the velocity, therefore,

v^=k- 2^Rdr. (7)

Comparing this with the expression for the velocity of a

point moving in a right line to or from the centre of force,

(Sect. II. x\rt. 6.) we see that they shall be equal, if the

constants are equal ; it follows, therefore, that if the velo-

city of the point moving in a curve by the action of a cen-

tral force, be equal to the velocity of the point movino- di-

rectly to, or from the centre, at any equal distances, they

shall be equal at all equal distances. We need not there-

fore, in what follows, dwell on the applications of this for-

mula for the velocity to particular laws of force, as this has

been sufficiently done in a preceding section, where we

treated of the motion of a material point in a right line pass-

ing through the centre of force.

As the force r is by hypothesis a function of the distance

from the centre, the integral \Rf/r is likewise a function of

the same quantity: denoting this by 0r, equation (7) may be

written

v^= k—2<p{r):

The constant, k, shall be determined, if the velocity at any

given distance be known. For, let v be the velocity at the

given distance /, then,

which gives the value of k. Subtracting this from the pre-

ceding equation, we have

Y
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v'^-v''- 2 (/)-0(r)^ (8)

It appears from this equation that the velocity depends solely

on the distance of the moving point from the centre of force,

and not at all on the nature of the path described.

5. The equations (5) and (6) are the integrals of the first

order of our fundamental equations (3) and (4), which they

should therefore replace ; and are evidently sufficient to de-

termine the coordinates of the moving point at each moment

of time, the law of the force being known. For if the co-

ordinates r and to be eliminated successively from the equa-

tions

the resulting equations, containing each only one of the co-

ordinates, and the time t, will, when integrated, express the

relation between the time and each of those coordinates

;

whereby the position of the moving point will be ascertained

for any given time.

Again, if the differential of the time, dt, be eliminated

from those equations, the resulting equation, containing only

the coordinates of the point, will give by integration the re-

lation between r and w, or the equation of the curve de-

scribed by the moveable.

To proceed to these applications : if we substitute in the

latter of those equations for -^ its value -^, obtained from
dt r

the former, it becomes

dr^ "2

^f+^+ ^^^clr = L (9)

The integral of which will give us the relation between the

distance r and the time t.

In order to find the relation between w and t, instead of

eliminating r between the two differential equations above,

and then integrating, we shall find it more convenient to eli-
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minate that quantity between the integral of equation (9) and

the equation of the orbit.

The differential equation of the orbit is found by substi-

tuting the value of dt obtained from equation (5) in (6),

which thus becomes

C^+^)+^S-*="-
which equation will assume a more convenient form, if we

take for the variable ?/ = - ; it becomes by this transforma-

tion,

f du'^ , „\ ^C du
c a^+"^^^v-''- (>«)

From this equation we are enabled, when the law of the

force is known, or r given in function of u, to obtain by inte-

gration the relation between u and w, or the equation of the

orbit : and vice versa, when the equation of the curve de-

scribed is given, we may obtain by differentiation the ex-

pression for R, or the law of the variation of the force. The
latter of these problems is called by English mathematicians

the direct, and the former the itiverse problem of central

forces. We shall commence with its application to the

former of these questions, as more naturally connected with

our subject, reserving the latter for a subsequent part of this

section.

6. The force being supposed to vary directly as the dis-

tance from the centre, let it be required to investigate the

equation of the orbit.

In this case r = mr= — , m being the force at the unit of

distance. Then, \ r.-^- = \ —~ = -—^, which being sub-

stituted in equation (10), we have

v2
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(S + »^)
I *^ _ 7

the differential equation of the trajectory.

Before we proceed to integrate this equation, we shall

detei'mine the arbitrary constants by means of the maximvim

and minimum values of the variable u. These values are

found by making -7- = in the differential equation, which

'iTt

thus becomes ch^-\—^ —^ —0- or,
u

C^ c

and denoting the roots of this equation by w', m", we shall

have

'2 I "2 '2 //2-^=.11 '*+ U . —7 = M M .

Substituting now these values of the constants in the diffe-

rential equation, and multiplying by u^, we find

!f!lf^' + m4_^(^'2^ ^,/2^) ^^2^ ^/2^^,/2 _ Q^
atu

Now, in order to integrate this equation, let us make

% being the new variable. And it becomes by this transfor-

mation

(ii)^-r-^TH--o-
or.

dwzz.

the integral of which is
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.>= -^arc.(cos.= ^^^)+a.
a being the arbitrary constant.

Now, reversing the formula, and observing that

COS. 2 (a

—

(o) = COS. 2 (w— a), we obtain

« = -1-(m'2_?/'2). cos. 2 (w-a).

whence

u'zz i (m'2+O-i {u'^-u"^). COS. 2 (w-a). (6)

the complete integral.

This equation will assume a very elegant form, ifwe sub-

stitute for COS. 2 (w— a) its value cos.^ (tu— a)— sin.^(w— a) ;

we shall have by this substitution,

u^— u"^. sin.^ (ti»— a) + m"^. cos.^ (w— a). (c)

When (i)— arrO, i^:=:ii"^\ and when w—a=-, u^z=.u"^.
At

From which it appears, that u and ?*", the maximum and

minimum values of ^/, are those which correspond to the

TT
angles w :=--+- «> and (o=a, respectively.

Substituting for m its value -, we shall have

—7;-=. -To. sin,^(w— a) H—^. cos.''^(w— «).
r^ a'

a and 6 being the gi'eatest and least values of r ; whence.

id)
a^. sin.^ (w— a) -j- b'^. cos."^ (w— a)'

The equation of a central ellipse, whose semiaxes are a

and 6,

The semiaxes a and 6, may be easily expressed in terms

of the constants, m^ k, and c. For, solving equation {a),

we shall have
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^,2 _ j/c+Vik'-mc' „2_ jk-Vik^-mc'

the reciprocals of which are the values of P and «^.

7. Let us now proceed to apply equation (9) to obtain

the relation between the coordinates of the curve and the

time.

R r= mr, therefore, \Rdr = m.—.

which being substituted in equation (9), it becomes

at r

or multiplying by—

,

1 r^.dr^ . k ^ c^ f.—'-^^T+r -^ + —= 0.m at m in

The constant quantities which enter this equation have been

already determined in function of ti and u", the greatest

and least values of u ; for in the preceding article we have

had

whence,

c^ 1

m u u

and these values being substituted in the differential equa-

tion, it is

m dt^

To integrate this equation, let us make
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and it is transformed into

4m' df'^'^ \ 2 J

and separating the variables

1 (h
dt=-— — .

whence,

t= rr-j- . arc( COS. zz —-2—To-J + const.

Let ^=:^, when ^=|(a^— 6^), or r^= a^; and there is,

t' zz const. Wherefore, observing that the cosine remains

the same whether the arc is positive or negative, the cor-

rected integral is

t—t'= ——— . arc ( cos.= ^7-9 wS- {e)

% being equal to r^— K^^-f-^^J-

Reversing this formula, we have

whence,

i^=\{a^ArlP)^\{a^-})')Q,o^.2^J m{t-f).

or, substituting for q,o^.2^I m{t— i'^ its value cos.^v/;w(^—

r'' = a\cos.^Vm{t-t')+b\sm.''Vm(t-t') (/)

The relation between the angle w— a and the time is

readily found by substituting this value of r^ in the equation

of the orbit,

o'^.sin,^(a;— a) + ^''.cos."'^(w— a)

Multiplying the result by the denominator, and reducing we

find
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whence,

tan.((o—a)= -.tan. -v/w?(^— 0- ig)

a remarkable expression for the relation between the angle

at the centre and the time.

It appears from this equation, that the tangents of the

angles w— a and \^m{t—f) vanish together, or that the an-

gles simultaneously arrive at those values which render the

tangent equal to cipher; therefore, when w— a= 27r, or the

radius vector performed an entire revolution, \/m(t—t^
— Stt; if, therefore, the time of an entire revolution be

called T, we have

This result, being altogether independent of « and b, the

elements of the orbit, shews that all ellipses described

round the same centre of force, the force varying as the

distance, are described in the same time.

8. The force being supposed to vary inversely as the

square of the distance, it is proposed to investigate the

equation of the trajectory.

Here r=—irww^. and \ r. —^ = \ mdu — mu. Making

this substitution in equation (10), we have

the differential equation of the curve.

Proceeding as in Art. 6. let u' and u" be the roots of the

quadratic equation,

2m k
xr c c^

zrO. (£)

which is obtained by making -r- =0. in the differential equa-

tion ; we have
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zzu'+u", —^-tiu'.c c

and these values of the constants being substituted in the

differential equation, it becomes

clu)

In order to integrate this equation, let us make

and it becomes by this transformation

dz

and integrating,

(i) zz — arc( cos.= -^j-, 77-
J
-\-a..

\ i{u'—u)J

or reversing the formula,

%zz^{u'— u"). cos.(aj— a).

Therefore,

tt =|(m'+m")+ J(m'— e/').cos.(w- a). {k)

the equation of the curve.

This equation may be put under a form similar to that of

equation (c). Art. 6., and by precisely the same transforma-

tion. Substitute for cos. (w — a) its value cos^ —

sin^ —-TT—. and we shall have
2

ti= u. cos -—: h w .sm^ —:—

.

(I)
2 2 ^ /^

When 10— a:z:0, u:=u' \ and when a>—a = tt, u-=.ii'. It

appears, therefore, that u and ii\ the maximum and mini-

mum values of «, are those which correspond to the angles
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(I) = a, and w = tt + «• They are, therefore, in the same

right hne.

If we substitute for u, u, and u", their values-, —r, and
r r

—r, in equation (Z:), it becomes

or,
/ Itrr

r =
^{r"+ r')-{-\{r"—r'). cos. (w-a)

And making ^{r" -{-r') = «, !(/•''—/) z: «e, there shall be

r'r"z=. a^— a^e^ ; and the equation becomes

«(l-0
, ,

1 + e.cos. (w— a)

the known equation of a conic section referred to the focus

as the origin.

—

{See Analytic Geometry, Kxt. 51.)

9. For the determination of the constants a and e, we

have

«=i(/+0=:i^^^^,

and

ae=i (r' —r)=: ^
, ^, \ whence e = —

j,uu" u +u
But we have had above, the equations

from which we deduce |^(m'—m")=^1
-J ; substituting

these values in the expressions for a and e, we find

m / 2

X' ^=Vl+A-.l^. (;,)



OF CENTRAL FORCES. 331

It is a problem, however, of more importance to deter-

mine the elements of the orbit a and e by means of the

initial velocity, distance, and angle of projection; or, in

other words, a body being projected from a given point, in a

given direction, and with a given velocity, to determine the

particular conic section, which it will describe. This is done

by finding the values of c and Tc in terms of the velocity, dis-

tance, and angle of projection, and substituting them in the

equations («).

If be the angle formed by the tangent with the radius

vector, sin.0 = —7—, ds being the element of the curve.
as

Multiplying by r, r. sin. = —— =z —7-, by equation (5).
(XS do

.*. c = -j-.r.sin.0 •=. z?.r.sin.0.
at

Again, by equation (7), v^zz k—2 \Rc?r rz^-f- ——, when

the force varies inversely as the square of the distance, or

R = -2". Therefore, if /o be the distance of the point from

the centre at the commencement of the motion, v the velo-

city, and £ the angle of projection, we shall have

cnv.p.sm.E, k—\^ . (0)
P

and substituting these values in equation (w),

a = m „ .
v>^sin.2£(v2-—

j

^^=1+ ^. e_i. (p)

^!^__v^ ??j

P

The value of a thus found, is independent of the angle of

projection ; from which it appears, that in whatever direc-

tion the body is projected, the axis major of the section will

be the same, if the velocity remains unaltered.
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The curve described shall be an ellipse, hyperbola, or

parabola, as the excentricity e is less, greater than, or equal

to unity : that is, according as

v^jo^sin.^tf v^

)

l-e-= -V

is positive, negative, or cipher. But the sign of l—e^ is

2m
evidently the same as that of v^. Therefore, the curve

shall be an ellipse, hyperbola, or parabola, according as v^

is less, greater than, or equal to .

P

10, Let us now proceed to investigate the time of de-

scribing any portion of the orbit.

Since R= -2-j \Rdr= \ m.-j— . If then this value

is substituted in the equation,

and the result multiplied by r^, there is

df
— Jcr^— 2mr-\- c^=0.

The values of the constants k and c^ have been already ob-

tained in function of the elements of the orbit: for from

equations (w). Art. 9, we have

a

If now we substitute these values in our differential equa-

tion, and multiply the result bv —, it becomes
^ " m

m dr
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or, separating the variables,

aV- -.rdr

dt =

In order to integrate this expression, let us make a—r
= ae.z, whence we have

r — a{\ —ez), drzz — ae.dss.

By this substitution, the equation becomes

, a^/a {\~ez)dz
(it— — ~~. • ,

~»
Vm Vl— s^

the integral of which is'&'

a\J a
t = —,— |arc.(cos.=^)— e. v^l — s^l +const.

y/

m

*

If t' be the value of t, when «=1, ov rzz a{\— e), we
shall have ^'z= const. ; and the corrected integral is

t-t'-"^ |arc.(cos.=^)--eVrr^2-| , n

t' being the time elapsed when the body arrives at the lower

apsis.

t—t' being the time counted from the lower apsis, the

time of a semi-revolution will be had by making r =: « (1 +e),

the higher apsidal distance, or ^ = — 1 ; which gives—-— . -w
\/ m

for the time of half a revolution. If, therefore, the time of

an entire revolution be called t, we have

T=27r.-7—

.

(r)

From which it appears, that the periodic times in different

orbits vary in the sesquiplicate ratio of the major axes ; this

is the third law of the planetary movements discovered by
Kepler.

The relation between / and x or r, given by equation (5'),
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is generally exhibited under the form of two equations,

which are virtually contained in that equation, and flow from

it by introducing a new variable, namely, the arc whose co-

sine z:zz: for if this be called (j), there shall be

, a^ a

,

. .

^ =: cos.ri), t— t-zi —-— (0— e. sm.ri)).

or making for conciseness
^ ^
— n, and observing that

^J m
a^J a

r-zia{y—ez)y

r — a{l—e.cos.(p), (s)

n{f-^t') zz. <jt—e. &\n.<p. {t)

By the latter of these equations ^ may be expressed by

means of t— 1\ and this substituted in the former will give

the radius vector, r, in function of the time, or conversely.

It remains now to discover the relation between w and t.

For this purpose we must eliminate r between equation (s)

and the equation of the orbit : we thus have

1— e^

l— e.cos.(b=. -. r-.

1+^. cos. (w— a)

whence we find

- . cos.rf)

—

e
cos. (w— a) = .

1— e. cos.0

from this we obtain the values of 1— cos. (w— a) and

1 +C0S. (w— a), which, divided one by the other, give

1 — cos, (u) —a) _ 1 -{-g 1—cos.0

l+cos. ((u— a)
~" 1—e* l+cos.^'

or,

(i} — a.

tan.——

-

2

If, therefore, ^ be found in terms of t— t', by means of

equation (t), and the result substituted in {v), we shall have
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(o—a expressed by means of t—f, or the angle in function of

the time.

In order to represent the planetary movements, astrono-

mers have supposed a star, which sets out from perihelion at

the same time with the planet, and moves with a uniform an-

gular velocity round the sun, the angle n(t—t') formed by

the radius vector of this star with the axis major, at anytime

t, is called by them the mean anomahj ; the angle w— a formed

by the radius vector of the planet, the true anomaly ; and

the angle the excentric anomaly.

11. Let the expression for the force consist of two parts,

one of which varies inversely as the square, and the other

inversely as the cube of the distance ; and let it be required

to find the equation of the curve described by the body.

R rz mit^ -^ m'u^,

C du C/ , / N 7 . f u^
.'. \ R. —2 — \ i^m -\-m u) du := mu + m —

.

making this substitution in equation (10), and arranging, we
have for the differential equation of the orbit

dti"^

c^. -r-o + (c^—m') u^—^mu—kzzO,

du
If we make -7- =: in this equation, the roots of the re-

dh)

suiting equation will be the greatest and least values of w.

Therefore, u' and u" being those values, or the roots of the

equation,

2 2/» k
u'- 5 y.u 2 7 = 0. iw)

we shall have

9,m , . .,
— k '.."—= ?«-f-M, -^ r'^uuc— ni c —m

Therefore, dividing the differential equation by c^—m'i sub-
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C —m
stituting these values in the result, and making -

—

— ^

it becomes

1 du^

y dh)

In order to integrate, let l{ti'-{-u") +;g be substituted for u,

and the equation is transformed into

or, separating the variables,

du)z=.-

whence,

1 ^ ^ >
(D rz .arc. < cos. =: -rr—. ;;- > -\-a.

y i i(m - M
J S

or, reversing the formula,

IS — ^{u — u^).COS.y{(i)— a),

.*. u=:l{u'+u')-\-^{u' —u").cos.y((i)— a,). (x)

If we substitute in this equation for cos.7(w — a) its value

cos.^yf —-— j — sin.^yf—-— j, it will assume the form,

u-u\cos.'y[^^J+u''.s[n.'y\^'^J {y)

An equation which coincides with that of the focal ellipse,

except in this, that the variable (w— a) is multiplied by a

constant quantity. Hence this curve may be readily con-

structed; for, in the ellipse whose apsidal distances are

—r and —J}, if a line be drawn from the focus forming an
v! u °

angle with the axis, which is to the angle formed by the ra-

dius vector of the ellipse with the same, in the ratio of 1 to
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7, and this line be taken equal to that radius vector, its ex-

tremity shall describe the curve in question.

When oj— cx^— O, in equation (y), we shall have u — ii;

and when ^(w— a)=7r, there is u— u". Therefore, w and

w" being the values of w which correspond to m' and u" , the

greatest and least values of u, we shall have

, TT

7

Therefore, subtracting, the angle between the apsides,

,> /_ ^_ ^

12. The force being represented by any function of the

distance ; it is required to find the equation of the orbit,

when it approaches very nearly to a circle.

The force r being a function of the distance from the

centre, or its reciprocal tt ; —j shall be a function of the

same quantity, which we shall denote by the character^ (m)
;

whence r = t/'./iu). Also, \ r. -j— \ f{u).du ; denoting

this integral by the character //«), and substituting in equa-

tion (10), we have

^i§+>^) -m«)=^.

Now it is evident that if the body is projected in a direc-

tion perpendicular to the radius vector, and with a velocity

very nearly equal to that in a circle at the same distance,

the orbit will not differ much from a circle. But by equa-

tion (5) we have

c, d(i) ,, (Is dio . f.

c= r^. —r-^=z7-. -J-. —p- zzrv.smM.
at at as

Hence, a being the value of u, or the reciprocal of the dis-

z
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tance r, at the place of projection, and v the velocity of

projection, we have

V
c=.-.

a

the angle of projection being right, and therefore sin.0=: 1.

Again, by equation (7),

But when a^=:a, vzzv ; wherefore,

and these values of c and k being substituted in the differ-

ential equation, it becomes

Now let Mzza-j-s:, a being the value of u at the point of

projection ; and z a very small but variable quantity ; then,

duzzdz, and by Taylor's theorem,

/X«+^)-/X«):=/ («).
f
4-/(«). -^^+/»• iJ^+ &^-

f being the first derived function ofy^.

Therefore, making these substitutions in the equation

above, and dividing the whole by -^, we find

Putting v' for the velocity in a circle at the point of pro-

jection, there is v'^zzrx radius (Equat. (/'), Art. 14.)

zza'^.fia).-= a.f{a). But by the conditions of the pro-
ct

blem, v^ : v'" : : 1 : 1 -f-S, S being a very small quantity ; there-

fore,
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substituting now this value in the equation just obtained,

neglecting the terms which contain z^, ^^8, &c. as indefi-

nitely small compared to the rest, and arranging, we obtain

the differential equation of the curve.

In order to integrate this equation, let us make

1 '.
; —y", and dividing the equation by y^, it will

assume the form

7 aa» \ 7 /

or, putting for ^ its equal m — a.

= 0,

(J11

If we make -— zr in this equation, the roots of the re-

suiting equation will be the values of u at the apsides, or the

greatest and least values of u ; we thus find

= «(! + ?!). M
\ 7

These values being, as before, denoted by m" and u', the

above equation will become

—5-. —j—^-vu — (m -\-u )u-\-uu —V.
7 dis)

the same differential equation which we have had in the last

article, whose integral is

or,

,,=:,/.cos.^7 (^)+,/'.sin.v(^) (^O

and if we substitute in the latter of these equations for u

z 2
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IH—2) ^^^ ^) ^^ shall have the

equation of the curve,

?<=« ? 1 + ^.cos.V [—2~)
S

^^^

13. It appears from Art. 11. that the angle between the

apsides in this curve is

,, , TT TT

tU — to = — ZZ {dl
y a/, a-r{a)

^
/(«)

When the force varies as any power of the distance, or

r:z:;wm", f{u)'=- —^"zimu"^^, andy'(?<)= »«(w— 2)?<"~^; there-

fore,

a.fia) , w(«-2)a»-2 ^
1 ^tV = 1 ^

—

i^^—-^ - "•

and the angle between the apsides =
,

Hence, when the force varies directly as the distance, or

wz: — 1, the angle between the apsides = -, as we have al-

ready seen, Art. 6. When the force varies inversely as the

square of the distance, or w=2, the angle between the ap-

sides -zzTT, as has been already shown, Art. 8. When the

force varies inversely as the cube of the distance, the angle

between the apsides is infinite: and the force varying in-

versely as any higher power of the distance, the value of

the angle becomes imaginary ; which indicates that the body

leaving an apsis will never arrive at another; and, there-

fore, that it shall either descend to the centre or go off to

infinity.

Let the force consist of two parts, each varying as some

power of the distance, or R=:wi?i"-}-mV. In this case,
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and

f'{ii)- m{n- 2)u"-^-\-m\n - 2)m"'-^.

(3— y^);?^a"--+ (3- n)m'a'''-^

and the angle between the apsides is equal to

V~ ?na"~'' + ma"
(3- ii)ma"-^-\-{ii- n)mar'-'^

14. In all that has preceded, we have supposed the forces

given, and thence determined the nature and circumstances

of the motion. We shall now proceed in an inverse method,

by supposing the laws of the movement known, and thence

deducing the nature of the forces, and the laws according to

which they vary.

This method may be applied to the motion of the hea-

venly bodies, which, as it will afford the most convenient

illustration, will moreover lead to the most important re-

sults.

Let us suppose, therefore, in the first place, as was

judged to be the case in the infancy of astronomical know-

ledge, that the planets move in circular orbits round the sun,

and with an equable motion. In this case, it is evident, the

areas described round the sun are proportional to the times

of their description, and therefore it follows, from Art. 6.

and 7. of the preceding section, that the forces are always

directed to the sun. In investigating the nature of these

forces, therefore, we may employ the theorems respecting

central forces obtained in the preceding part of this section.

For the case under consideration it will be most con-

venient to make use of equation (4), which, since r is con-

stant, becomes

duP-
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Now — expresses the angular velocity, and as this by

hypothesis is constant, we have —r — — , t being the time
at T °

of the entire revolution ; therefore, making this substitution

R - 47r^.^ {e')

the general expression for the force in a circle.

This formula, however, will not enable us to determine

the variation of the solar force dependent on the change of

distance, unless it should appear that there existed some re-

lation between the periodic times and the distances. Here

observation comes to our aid, by which it appears that the

squares of the periodic times of the planets vary as the

cubes of their distances from the sun ; and from this result,

combined with the expression for the force already found,

we conclude that the forces by which the different planets

are urged towards the sun vary inversely as the squares of

their distances from that body.

V being the velocity, we have v = , therefore.

'If

^=VI7. if')

This is the general expression for the velocity in a circle de-

scribed under the influence of a force directed to the centre.

But, the force varying inversely as the square of the distance,

as has been proved to be the case in the planetary system,

v varies as —- ; i. e. the velocities of the different planets

vary inversely in the subduplicate ratio of the distances.

15. As the science of astronomy advanced, it was found

that the circular hypothesis did not exactly accord with ob-
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servation ; the true laws of the planetary movements were

first discovered by Kepler, and are as follows

:

1st, Each planet describes equal areas in equal times

about the sun.

2d, The orbits described by the planets are ellipses, the

sun being in one of the foci.

3d, The periodic times of the different planets are in the

sesquiplicate ratio of the major axes of their orbits.

From the first of these laM^s we conclude, as before, that

the force, by which each of the planets is urged, is con-

stantly directed to the sun ; thus the nature of the force is

determined.

The area described in the time dt being ^r^dw, we have

by this law

r^dii) =. cdt.

Whence, the orbit being given, we can find the time of de-

scribing any portion of it, and also the velocity at any point.

For, in the first place, we have dt — , in which, by

means of the equation of the orbit, w may be expressed in

terms of r, or vice versa, and the time then found by inte-

grating.

ds
Again, the expression of the velocity is v=. — , ds being

the differential of the arc of the curve; but ds'^—dr'^-\-r'^d(jj^,

andc/^^= —2— » whence v'^— c^ i
^ 2

"1"~2 )> ^^^> substitu-

ting - for r.
u

du^ 1
It is easily shown that -j-^ -\- ti^

—
—^, p being the per-

pendicular from the origin on the tangent ; wherefore,
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C
vzi-\ or the velocity at any point varies inversely as the

perpendicular let fall from the centre of force on the tangent

to the curve at that point ; as may be shown very readily

from geometric considerations.

16. The relation between the coordinates of the moving

body, and the central force by which it is urged, is given by

equation (10). That equation has been hitherto applied to

discover the relation between those coordinates, or the equa-

tion of the curve described by the body, when the force is

given. In the present case, however, the path of the body

is given, and it is required to deduce the law of the force.

For this purpose let equation (10) be differentiated, and the

result divided by 2du ; it becomes

^(d'^u
, N R n

whence there is

-=^'"0^^+
')

(12)

the general expression for the central force in any curve

described by its action combined w^ith an initial projection.

Now by the second of Kepler's laws, the curve described

by each of the planets is an ellipse, the sun being in the

focus. The polar equation of the eUipse referred to the

focus is

_ 1 + e. COS. (w— a)
'' - ^^?) •

and differentiating twice, we have

dhi — e.cos.(w— a) , cPu
.

1~" whence -7—t+m^
du}^~ a(l-e*^) ' duj''^ a{\-ey

and this being substituted in the general expression for the

force, we find

2 2_ c u _ m ,.
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making • ^- zz m. The force, therefore, by which each
° rt(J — e^)

planet is solicited, varies inversely as the square of its dis-

tance from the sun.

17. The quantity ?u expresses the intensity of this force

at the unit of distance ; this is constant for any one planet,

but we do not as yet know whether it may change or not in

passing from one planet to another. The third law of Kep-

ler will enable us to determine this point.

Since the areas are proportional to the times of describ-

ing them, and c expresses the double of the area described

in the unit of time, ct will be double of the area described

in the time t ; that is, double the area of the ellipse, t being

the time of an entii'e revolution. Now the area of the ellipse

= irab. (a and b being the semi-axes,) = ira^ yj \— e^ ; where-

fore, c — Stt. , and
T

a{\—e^) T^

Now m being the absolute force for any other planet,

whose semi-axis major is a , and periodic time t' there is

72*T^

But by the third law of Kepler, — =: -75 ; wherefore,

m^m, or the absolute force is the same for all the planets.

If, therefore, we suppose the planets placed at equal dis-

tances from the sun, they shall all be urged by the same ac-

celerating force ; and being let fall without any initial velo-

city, they would descend towards the sun, describing equal

spaces in the same time.

Thus by Kepler's laws, which are the results of obser-

vation, Newton was led to the discovery of the nature of

those forces which animate the planetary system. From the
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proportionality of the areas to the times of their description,

it has been shown that the force soHciting each planet is di-

rected always to the centre of the sun. From the ellipticity

of the planetary orbits, we have concluded, that, for each

planet, this force varies inversely as the square of the dis-

tance from the sun. And, finally, from the third law of

Kepler, which has been called the harmonic law, it follows,

that this attractive force is the same for all the planets, if

placed at equal distances from the sun ; and, therefore, that

it does not change from one planet to another, but in conse-

quence of the change of distance.
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SECTION V.

OF CONSTRAINED MOTION IN GENERAL.

1. If a material point or body, subjected to the action of

a certain force, p, is constrained by a rigid line or surface

to take a direction different from that of p, this force natu-

rally resolves itself into two forces ; one of them perpendi-

cular, and the other parallel to the line or surface. This

latter, called the tangential force, shall produce its full

effect in accelerating or retarding the motion of the body :

but the normal force is equilibrated by the reaction. This

normal force constitutes the pressure immediately arising

from the force p ; and being independent of the movement,

it is the only pressure we have had occasion to consider in

unfolding the theory of Statics.

If several forces, p, p', p", &c. act on the body, what

has been stated relative to a single force is to be understood

of their resultant.

But that this is not the whole amount of the pressure

made by the body, moving on a curved surface, may appear

by supposing the action of the forces p), p', p", &c. to have

ceased. For the continual deflection of the body from the

course it would have taken if unrestrained, evinces the ex-

istence of a force of reaction, and, therefore, of a pressure

against the constraining line or surface.

The better to conceive the nature of this deflecting force,

the figure, to which the body is constrained to accommodate

its motion, may be supposed to be a polygon. Let mm'm",

&c. be that polygon, (Fig. 143.), and w the angle made by

the side nim", with the side vun produced beyond the point
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ni. When the body has described the hne mm with a cer-

tain velocity z?, instead of continuing its course in that hne

produced, it is constrained to move in the contiguous side

m'm'. The velocity with which it moves in the line mm\
is had by resolving v according to the line mm', and the

perpendicular to that line. The velocities in these direc-

tions are zj.cos.o), and z^.sin.w, respectively. The former

of these is the velocity retained in the side 7nm\ and the

latter is that destroyed by its reaction.

2. If the constraining line or surface is curved, the

change of direction is continuous ; and, therefore, the re-

action by which this change is produced, is unremitting.

The angle w, which measures the deflection in passing

from one element to another, is indeed indefinitely small;

but then, the time dt is also indefinitely small : and when the

latter becomes a definite quantity, the angle which measures

the change of direction also becomes of a definite magni-

tude. The force of reaction, in this case, being unremit-

ting, and moreover, requiring some definite time to produce

a definite effect, is comparable to an accelerating or re-

tarding force. Its value is expressed by the velocity de-

stroyed in an indefinitely small time divided by that time,

- r.sin.W V.M
, , • ^ n - ^ 11 1

I.e. by——— , or —.-', the arc, when indennitely small, be-

ing confounded with its sine.

To find a more convenient expression, let mm be the

element of the curve described by the body, in the time

dt, (Fig. 144.), and let two tangents be drawn to the points

m, m', intersecting at o, the former of these being produced,

as to n. The deflection or change of direction, which oc-

curs in the passage from m to m', is then measured by the

angle nom'. Now if mc,m'c are perpendiculars to the tan-

gents at the points m and m\ meeting at c, the angle nom'

is equal to the angle at c, which, therefore, may be denoted

by (X). Also, putting ds for the indefinitely small arc mm'^
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and p for mc or 7nc, which is then the radius of curvature,

ds v.dt
we have w = — = ——. Wherefore, substituting this value

P P
^,^^^ ^,

of ix), the deflecting force —^ — — , The same is the mea-

sure of the pressure arising from the tendency of the body

to move in a right Hue : a tendency which is counteracted,

but not destroyed by the normal forces. The force — be-

ing always directed from the centre of the circle of curva-

ture, is denominated the centrifugal force.

3. If a body is constrained to move in a circle, the radius

of curvature is the radius of the circle actually described
;

and, r denoting that radius, andy the centrifugal force, this

force is expressed by the equation f — —zz -^-
; in which

h denotes the height due to v, the velocity of the gyrating

body. This equation immediately gives the relation of the

centrifugal force in a circle to the force of gravity ; for di-

viding both sides of the equation by g, there is

ff r
*

The equationy=— may be changed for another, ex-

pressing the centrifugal force by the time of the revolution

:

for, denoting this time by t, there is Z7= ; which value

being substituted, the equation becomes

47rV

The time t is found by dividing any certain portion of time

by the number of gyrations made in that time: and the

facility with which t is thus obtained, even in the case of

rapid movements, renders this expi'ession particularly con-

venient, whenever it is proposed to find the absolute value

of the centrifugal force. For example ; for the centrifugal
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force at the equator, produced by the rotation of the earth

round its axis, we have 7r= 3.1415926, tz=86164, the num-

ber of seconds in a sidereal day ; and for the equatorial ra-

dius rr: 20,976876 feet. Making these substitutions in the

preceding formula, there is ybr.11154.

The centrifugal force at the equator is, therefore, such

as would generate a velocity of .11154 feet, in a second of

time. To compare this with the force of gravity at the

equator, the latter, estimated in the same way, is 32.125,

consequently,

•' 288

I. e. the centrifugal force at the equator is the 28Sth part of

the effective force of gravity. But if g denote the attraction

of the terrestrial spheroid

so that we have

-^ ~ 289

or the centrifugal force at the equator is the 289th part of

the total gravity.

Were the time of the earth's revolution diminished in

any ratio, the centrifugal force would be increased in the du-

plicate of that ratio. It is, therefore, easy to find the time in

which it should revolve, in order that the centrifugal force

at the equator should be equal to that of the attraction to-

wards the spheroid. Since, putting t' for this time, we have

t'^:t-:: 1 : 289. Wherefore, t'=: —, showing that if the

earth were to revolve round its axis in the 17th part of a

sidereal day, or in 1\ 24", 28|", the force of gravity at the

equator would be equilibrated by the centrifugal force ;
and

the bodies on this part of the earth's surface would have no
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weight. In this statement it is supposed that the figure of

the earth remains unchanged.

When a solid revolves round an axis, each point describes

a circle whose radius is the perpendicular let fall from that

point on the axis : and all those circles being described in

the same time, the centrifugal forces of the several points

are proportional to their perpendicular distances from the

axis. Consequently, i^f denote the centrifugal force at any

parallel of latitude, and r' the radius of the parallel,

/'=/^'=Aos./;

I being the latitude of the parallel. This force is directed

from the centre of the circle of latitude. The portion of it

which acts in opposition to gravity, is found by resolving it

in the direction of the terrestrial radius, or by multiplying it

by the cosine of latitude ; so that the diminution of gravity

arising from the centrifugal force is

/'cos./=/cos.^/.

To show this, let pepV be a great circle passing through

the poles p, p'; and let eg be the equatorial radius; bd that

of any parallel, (Fig. 145.) Then, if ce represents the cen-

trifugal force at e, that at b shall be represented by db ; and

DM being a perpendicular from d, on the radius cb, the part

opposed to gravity shall be mb. But cb : db : mb, i. e. ce : db :

MB ; wherefore, ce : mb : : ce^ : db^, or as 1 : cos.^/. Whence
it follows, that the decrement of gravity, immediately due to

the centrifugal force, varies as the square of the cosine of

latitude.

4. Many of the laws of unconstrained motion flow readily

from the principles here laid down. For when the body is

free, the forces acting on it must supply the place of the re-

action of the curve ; so that if the i*esultant of these forces

be resolved into two, one in the direction of the tangent, and

the other perpendicular to it; the latter must be equal and
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opposite to the centrifugal force. Hence it follows, that the

osculating plane of the curve, at any point, must contain the

direction of that resultant; and if be the angle which that

direction makes with the tangent to the curve, we must have

R.sin.(^ = —

.

P

When the resultant, r, is directed to a fixed centre, the

curve will all lie in one plane. In this case the angle B is de-

duced from the equation of the curve itself, and the law of

the central force is given by the formula

V-
R =

psin.d.'

If Sy denote the chord of curvature passing through the cen-

tre of force, y— psin.O; and we have the formula of Newton,

tr
R=Z .

7

When the body moves in a circle, whose centre is the centre

of force, 7 ::: /*, and

r

5. To return to the problem of constrained motion.

Ths forces by which the movement is affected are the forces

p, p', p", &c. or their resultant, r, and the reaction of the

line or surface. The force r is resolved into two, viz. a

normal and tangential force. The reaction is likewise re-

solvable into two forces, both of them normal. Of these,

one is equal and opposite to the normal force exerted by r,

and the other that expressed by — . The equal and oppo-

site forces being suppressed, there are only the force r re-

solved according to the tangent, and that part of the force of

reaction expressed by — . The former of these, being a
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tangential force, changes only the velocity ; and the latter,

being a normal force, changes only the direction, i. e. the

former is merely an accelerating or retarding force ; the lat-

ter merely a deflecting force.

That the deflecting force makes no change in the velo-

city, may perhaps require demonstration, more especially as

it has been shown, that when the path is a polygon repre-

sented by mnim", &c, (Fig. 143.) the body having described

the line 7ti7n, with the velocity v, enters on the line m'?n",

with the velocity v.cos.w. Whereby it would appear that

at the angle ni, a portion of the velocity is lost by deflection,

whose value is z>(l— cos. w); or,' f.ver. sin. w. And if the

figure described were actually a polygon, whether right

lined or curved lined, the angles being then finite, those

losses would have a finite value, and should, therefore, be

estimated. But the case is different, when for the polygon

we substitute its limiting curve. For the velocity lost in the

direction of the tangent, is to that destroyed in the direction

of the normal, as ver. sin. co to sin. w, i. e. as tan. - to unity.

Now the path being curvilinear, the angle lo is infinitely

smaller than any right lined angle; and, therefore, tan.

-

infinitely less than unity. The velocity destroyed at each

instant in the direction of the normal, has been represented

as the effect of a force, —, which must act during some de-
P

finite time to produce any definite effect; and the velocity

supposed to be destroyed in the direction of the tangent is

infinitely less : wherefore, if this latter is ascribed to the ac-

tion of any force, it must be to a force, such as cannot pro-

duce any efi'ect in any definite time. Whence it follows,

that there is no change made in the velocity, except that

which is due to the tangential force ; and that a body moving

in a curve in consequence of an impulse, and not affected by

2 a
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friction or the resistance of the medium, must for ever con-

tinue to move with the same imvariecl velocity.

6. The perpendicular action of the constraining line or

surface having no effect on the velocity, it might seem that

in developing the theory of constrained motion, it would not

be requisite to consider any force but that in the tangent

;

and undoubtedly this abbreviated process may be followed,

when the body moves in a given curve without friction. But

this is only a limited case of the general theory of constrained

motion: for the tangential force depends on the path ; and

when the body is constrained by a surface, the path itself is

to be investigated. In such cases, therefore, we cannot pro-

ceed from the tangential force to any of the objects of in-

quiry, viz. the time, the velocity, the path, or the pressure

on the constraining surface. Moreover, in many cases, the

tangential force depends not only on the form of the curve

described, but also on the pressure ; and, therefore, on the

normal force, as when friction is to be considered. For these

reasons, in developing the general theory of constrained mo-

tion, it seems proper to follow the usual method, which is

also the most elegant, by including all the forces actually

exerted, and then regarding the body as moving in free

space. In this method there are three fundamental equa-

tions of the movement, by which the normal force of re-

action will naturally be eliminated, whenever the quantity

sought is independent of this force ; whilst its introduction

into those equations aiFords the readiest means of expressing

its value, whenever this becomes the subject of investi-

gation.

Because of some peculiarities of management, as the mo-

tions are restrained by lines or surfaces, it seems expedient

to separate those parts of the general subject.
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SECTION VI.

OF MOTION CONSTRAINED BY A GIVEN CURVE.

1. Let each of the forces,^, p', ^/', &:c. be resolved ac-

cordmg to three rectangular axes ; and let x, y, and z, de-

note, as usual, the sum of the resolved forces acting m di-

rections parallel to the axes o£x, y, and sr, respectively. Also,

let N denote the force of reaction in the normal, and 0, 0', 0",

the angles made by this normal with the same axes. We
shall then have for the fundamental equations of the move-

ment,

3-2-=X+ N.COS.O.

^=Y+ N.C0S.6I'.
> (1)

||-=:Z-fN.COS.r.

Two of these equations will suffice for a plane curve : for

then R, and consequently n, is in that plane. Wherefore,

by taking two axes in the same plane, each of the terms of

the third equation shall be cipher.

Further

:

cos.20+cos.20'4.cos.20"= I. t2)

Moreover, as -r, -r-y ~ri are the cosines of the angles
as CIS as

made by the element of the curve, with the axes of x, y,

and z, respectively ; and as 0, 6', 6", are the angles made by

the normal with the same axes, it follows, that

^.cos.0-f ~.cos.e'+ ^.cos.r=0. (.3)
as ds as

2a2
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the first member being the expression for the cosine of the

angle contained between the arc and normal, i. e. of a right

angle.

By means of equations (1) and (3) the quantities n,

cos.0, cos.d', COS.0", may be at once eliminated; and the re-

sult shall be a differential equation of the second order

among the remaining quantities x, y, %, t, and the forces

X, Y, z ; whereby the time may be expressed as a function of

those forces and of the coordinates.

The equation thus obtained will also give the velocity. For,

, . . p 7 . , ds ^ dx^^-dir'+ dz^ ,

by substituting tor dt its value —, or '

, the

equation will be between v and the same quantities.

Equation (2) points to the method of eliminating the co-

sines by themselves, i. e. of reducing the co-efficient of n to

unity ; whereby the value of this force is at once expressed

as a function of the remaining variables.

The coordinates in the expressions thus obtained may

be reduced to one, by using the equation or equations of the

curve for the elimination of the rest. Then, if x, y, and z

are given functions of the coqrdinates, those forces being

previously so expressed, the quantity sought, whether it be

V, ty or N, shall be exhibited as a function of the remaining

ordinate.

2. To proceed according to the method now described,

let the first of the equations (1) be multiplied by dx, the se-

cond by dy, and the third by dz, and let these equations then

be added ; the co-efficient of n becomes cipher, as appears

from equation (3), and the result is

dx.cPx-\-dy.d'^y-\-dz.d'^z , , , ,•

z=.x..dx+Y.dy-\-z.dz. (4)

If we differentiate the equation

dx'^-\-dy'^-\-dz^ _ ds^

d¥ ~di"
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di

the equation becomes

we find that the first number of equation (4) is ds. -j^ ; and

d^s dx dy . dz ,,.
-r-r, = X.-r- + Y.-/+Z.—

.

(5)
di^ ds ds ds ^ ^

The terms in the second member of this last equation are

the accelerating forces reduced to the tangent. The equa-

tion, therefore, shows that the tangential force is equal to

the second differential coefficient of the space described,

taken with respect to the time, as has been already proved

with respect to unconstrained motion.

Equation (4), by integration, gives

dx'^+dif+dz'' _ 2^(^^ja:+Y,di/+ z.dz)+c. (6)
at' *'

Using the equation or equations of the curve for elimina-

tion, the integral of the last equation gives the value of t, as

a function of one of the coordinates. And here it may be

observed, that as the expression for dt, to be obtained from

equation (6), contains \/ dx--\-dif'-\-dz^, or ds, the time is de-

pendent on the equations of the curve, i. e. the time taken to

move from one point of the path to another, depends on the

form of the curve described between those points ; and is

accordingly different for different curves described between

two given points.

ds^
3. The first member of equation (6) being —^j ory^, that

equation gives for the velocity,

v'-'^\^{^.dx-\-Y.dy\i.dz)^c. (7)

When mdx-irYdy-^zdz is an exact differential of a func-

tion, <^{x, y, z,) of the three coordinates, the preceding equa-

tion assumes the form



S58 DYNAMICS.—SECT. Vf.

And if V denotes the velocity at any point whose coordinates

are x', y\ %', we shall have v"^— 2^{x\ y\ z)-\-c. Wherefore,

z)2-t?'2z=2^Gr, y, z)-^{x',
y', z').

This expression for the velocity, which is the same as

that found for unconstrained motion in Sect. 3. Art. 5, is in-

dependent of the form of the curve. Wherefore, if different

curves are described between the points whose coordinates

are x , y, z, and x", y", z", the body proceeding from one

of those points with a certain velocity, would arrive at the

other with a velocity which is the same for all those different

courses. And if the curve is closed, the body shall ever

return to the same point with the same velocity.

4. IfR= 0. e. e. ifx= 0. Y3:0. znO. then

J
{^.dx+ Y.dy+z.dz) = 0. and v^= c.

Wherefore, when the body moves in conssquence of an ori-

ginal impulse, and is not solicited by any force, but that of

the reaction of the constraining curve, the velocity, is unva-

ried, or the same at every point in the line of its motion.

This is agreeable to Art. 5. of last Sect, where it was shewn

that there is no change in the velocity, except that made

by the action of the tangential force.

5. If the body moving in the curve is urged by the force

of gravity only, taking the axis of z vertical, and measuring

the positive values of the parallel ordinates upwards, we

shall have

xz=0. Y = 0. z— —g. and v'^——2\gdz-\-c= —2gz-\-c.

Let z' be the height at which the velocity is cipher, and we

shall have c zz 2gz'. Wherefore,

v-'= 2g{z'-z).

The value of the velocity, in this case, depends exclu-

sively on the space z'—z; i. e. on the vertical distance from
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the point -svliere the velocity is cipher. Whence it follows,

that if several bodies moving in different curves under the

influence of the force of gravity, have equal velocities at any

common height above a horizontal plane, their velocities

shall be equal at any other given height above the same

plane. The time, indeed, in this, as in all other cases, de-

pends on the equation of the curve : but even in this respect,

the case now under consideration is distinguished by this

peculiarity, that the time depends on the relation between

the curve and the vertical ordinates only ; as appears by

ds
substituting for v, its value in the equation dt:=— which

(Is

then becomes df—
,

— Wherefore, if there are two

curves in which the relation between * and z, is the same,

t. e. if for equal arches, the vertical ordinates are always

equal, not only the velocities acquired, but also the times of

the descent through those equal arches shall be equal ; the

initial velocity being the same in both : and this is true, how-

ever the curves may differ as to their horizontal coordinates.

Two plane curves agreeing in the relation between the arc

and one of the coordinates must be the same. Wherefore,

the curves here spoken of can differ only when all but one

are of double curvature. This diversity may be obtained by

wrapping a plane curve round a vertical cylinder, whose base

is a continued curve of any figure; whereby an indefinite

variety of curves of double curvature may be produced from

the same plane ; and conversely, any one of the curves so

produced may be opened into a plane : and from the fore-

going equations it appears, that no change shall be made

thereby in the velocity acquired in the descent through any

arc, or in the time taken to describe it.

6. To find the pressure exerted at any point of the

curve; let us suppose in the first place that there is no ac-



360 DYNAMICS.—SECT. VI.

celei-cating force acting on the body. Equation (1), in this

case becomes,

^=Ncos.0, ^^z:Ncos.0, -J^=n<^o^^-« •

Again, ds denoting the element of the curve described in

the time dt, we have ds — vdt; in which ds is constant, since

ds
V is so, (Art. 4). Substituting then for dt its value — , in

the preceding equations, squaring and adding, we obtain

^^ y'V(d'ufM^p!/f+{rI-'^r

ds"

But, ds being constant,

ds^
p
—
V {d^xf 4- {d'yf-\- {d'^f

And we find, as before, (Sect. 5. Art. 2.), that the pressure

arising from the inertia of the moving point is expressed by

the formula

v^
Nr= —

.

P

To find the total pressure we must resolve the resultant,

R, of the accelerating forces into two, one in the direction

of the tangent, and the other normal to the curve. The
former of these is the force which alters the velocity of the

moving point, and the latter produces a pressure on the

curve which is independent of the motion of the body. This

may be called the statical pressure. It is to be combined

with the centrifugal force, or the pressure arising from the

inertia of the body, and the resultant will be the actual

pressure sustained.

7. We may apply these results to the case of a heavy

body, compelled to describe a vertical circle by the tension

of a rod or wire, whose extremity is attached to a fixed

point. Let c be the fixed point, (Fig. 14G.), ca the vertical
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passing through it, and cm any other position of the con-

necting rod. Let the force of gravity be represented by the

vertical line mn, and let this be resolved into two, mq in

the direction of the tangent at the point m, and nq perpen-

dicular to it. The former of these is the force employed in

accelerating the body ; the latter is that portion of gravity

which produces the strain on the fixed point. Letting fall

the perpendicular M)i on the vertical radius, from the simi-

larity of the triangles mnq and cmw we have

MQ _ M/i nq _ c?^

MN ~ MC' MN ~ MC*

Wherefore, if g denote the force of gravity, / the accele-

rating force, and p the pressure on the axle ; and if un and

AH the ordinate and abscissa of the arc terminating in the

lowest point; be denoted by y and s, and the radius of the

circle by r, we have

7/ r — «

The accelerating force, then, varies as the sine of the arc

measured from the lowest point, and the pressure as its

cosine.

The pressure just spoken of, however, is only the sta-

tical pressure, which would subsist if the force f were

counteracted, and the body at rest. The whole pressure is

obtained by adding to this the centrifugal force. This
.'- '

force, we have seen, is equal to — , or to 2g; — ; so that
;• r

if m denote the mass of the body, the total pressure will be

mg .^
r

If the body is let fall the rod being in the horizontal posi-

tion, x'zi:. r, and the tension at any point is dmg . This,
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in every part ofthe curve, is thrice the tension ofthe rod pro-

duced by the weight when supported by a force equal and op-

posite to the tangential force. If the body is supposed to de-

scend from the vertical position without impulse ; i. e. if it

descends from b, the highest point of the circle, z=2r:

and the strain is m^ ^-. At the lowest point this is

5Mgf or five times the weight.

If it is required to find the point at which the strain be-

comes equal to the weight, we have for this, mo- ^^

i"

2
=: M^ ; which gives z = 77^'. Accordingly, from whatever

o

height the body descends without impulse, the strain be-

comes equal to the weight when it has descended through

one-third of that height.

If it is required to find the point at which the pressure

vanishes, its value is to be made equal to cipher. This gives

!s = —-^—, for the height to which the body should rise, in
o

order that the pressure may vanish. But it is possible that

the body may never rise to this height; for z cannot surpass

either ;^' or 2r. This points to the greater and lesser limits

of the magnitude to be assigned to s-', in order that the

body may rise to the height required by the formula. For

making ;£ successively equal to z and 2r, we have z=r,
z'z=:-^r. If z' is less than r, the force of gravity resolved in

the direction of the length of the pendulum is directed from

the centre ; and, therefore, conspires with the centrifugal

force throughout the whole curve. And if z' is greater

than 4r, the centrifugal force is, in all parts of the curve,

greater than the weight ; as will appear by putting ^'= Ar-|- 8,

in the expression for that force. Being therefore greater

than the pressure made by the weight on the centre,

the connecting rod, throughout, suffers a tension ; which is
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the sum of those forces in the lower half, and then* differ-

ence in the upper half of the circle. If z' is not less than r,

or greater than 4/-, the hody shall always attain to the

height specified in the formula for a pressure equal to ci-

pher: '/'. e. it shall rise to a point where the weight, re-

solved according to the length of the rod,hecomes equal and

opposite to the centrifugal force.

When the body rises above this point, the pressure due

to the weight is greater than the centrifugal force : and

being, moreover, directed towards the centre, the rod is

compressed by the difference of those forces. Wherefore,

if ;s' falls between the jjrescribed hmits, and the heavy body

is suspended by a flexible cord, it shall part from the circle

at a point, whose vertical height above a is that given by

the equation ;:;=—^-. Being then unconfined by the
o

cord, it shall move in a parabola, having a common tangent

with the circle at the point of departure. The angle of ele-

vation, as well as the velocity at this point, being given, the

parabola is given.



364 DYNAMICS.—SECT. VII.

SECTION VII.

OF THE SIMPLE PENDULUM.

1. The use of the pendulum as a regulator of those

motions by which time is measured, and as affording the

readiest and most correct measures of terrestrial gravitation,

entitles this instrument to particular consideration. It con-

sists of a heavy body, suspended by a rod from a horizontal

axle, round which it is at liberty to move in the arch of a

circle. In unfolding the theory of this instrument, it is

convenient to regard the rod as being without weight, and

the body attached to it as a material point. The instru-

ment, so considered, is called by writers on mechanics a

simple pendulum. In reality, the rod, like all other material

substances, is heavy, and the body suspended by it of some

certain bulk; but as the time of the vibration of a pendulum

depends not merely on its length, measured from the axle to

the remote extremity of the appended body, but also on the

form of the whole pendulum ; or more properly, on the dis-

tribution of the matter of which it consists, it is found ex-

pedient to reduce every real pendulum to the simple pendu-

lum : i. e. to estimate its length by that of the simple pen-

dulum which would perform its oscillations in the same time.

The mode of making this reduction shall be shown in a sub-

sequent part of this treatise. For the present we shall con-

sider the case of the simple pendulum.

2. It has been already proved, that when a body is con-

strained to move in a curve whose plane is vertical, by the

influence of gravity alone, the velocity acquired at any point

is that due to the height from which it has descended, mea-
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sured in the vertical. The elementary proof of this is ex-

ceedingly simple. The curve being regarded as a polygon

with an infinite number of sides, the body may be supposed

to descend down a system of planes inclined to the horizon

at different angles ; and the planes being infinite in number,

no part of the velocity acquired shall be lost in passing from

one to the other. Wherefore, I, I', l", Sec. denoting the

lengths, and //, k', li\ &c. the heights of the planes, be-

ginning with the uppermost, and v, v', v", &:c. the velocities

at the lower extremities of those planes, there will be for

the fall down the plane /, v^ = 9,g1i. And v being the ve-

locity with which the body enters on the second plane, there

is at the end of this plane, v''^—v^^:.2gh'. And in like man-

ner, at the end of the third plane, v"'^— v'-zz2gh"- Where-

fore, by addition, v"'-—2ff {h-{-h' + 7i")- The same proof ex-

tends to any number of planes : accordingly, if ^' denotes

the vertical height of the point from which the body is suf-

fered to descend ; and z that of the point to which it falls

;

both measured upwards from the same horizontal plane.

The velocity will be expressed by the formula

Now the condition of a body suspended by a rod is the same

as if its movement were constrained by a vertical circle : the

tension of the rod taking place of the pressure, and the re-

action of the fixed point that of the constraining curve.

Wherefore, let bmam'b be the circle whose plane is vertical,

(Fig. l47.); A the lowest point; and ab the vertical diameter.

If the body is suffered to descend from m, its velocity at any

point, N, is had by drawing the horizontal lines mm' and nn^
meeting the vertical diameter at e and f ; for the velocity at

N, is that due to the height ef. The body having descended

to the lowest point a, where it acquires a velocity due to the

height EA, begins to ascend against the force of gravity, in

the other branch of the curve am' ; and as it appears by the

equation, that in the two branches the velocities are equal at
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equal heights, it follows, that the velocity in the ascending

branch shall not be destroyed until the body arrives at m'.

The velocity at this point being cipher, the body shall de-

scend by its weight to a ; where regaining the velocity with

which, in its progress, it had passed through this point, it

shall ascend to m : and thus the body shall go and return for

ever through the same arc mam', supposing no retardation

from friction, or from the resistance of the medium through

which it moves.

3, The time, di, of describing any element of the arc, ds,

is given by the formula

— ds
dt= ;

V

in which dt and ds are affected with opposite signs, be-

cause as the time increases, the arc measured from the

lowest point diminishes. Substituting in this expression for

V its value found in the preceding article, we have

dt=
-^^

V2g (/-z).

When the arc of vibration is indefinitely small, this for-

mula is readily integrated. Let s and s' be the arcs mea-

sured from the lowest point, corresponding to the ordinates

z and ^'; these arcs, being indefinitely small, are equal

to their chords, and we have

s'^:=2rz, s'^z^2rz\

Substituting then for 2z, 2z', their values — , and —, the

preceding formula becomes

/~ ds

y g \ s — s

The integral of which is

t^z\/ - diVc (cos. -zz-Y
y g \ sJ

which needs no correction, as tzzo, when s—s'.
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The time of descent to the lowest point is had by making

5zzO; and as arc (cos.=0)=-, this time is

'^^ g

The time of an oscillation, or of the whole descent and sub-

sequent ascent, is double of this, and if its value be denoted

by T,

=V!
This expression being independent of the magnitude of

the arc described, it follows that the time of oscillation will

be the same, however the arc of vibi'ation be varied, provided

that that arc is indefinitely small. It is this property which

renders the pendulum an instrument of such value in the

measurement of time.

Gravity being constant at any given place, it follows from

the same formula, that the times of vibration of different

pendulums vary as the square roots of their lengths.

4. Many curious relations are at once deduced from the

expressions just obtained. Thus, the time of the fall in the

vertical through a space equal to |r being ^ -, it follows,

that the time of vibration is to that of the fall through half the

length of the pendulum, as tt : 1 ; i. e. as the circumference

of a circle to its diameter.

The time of the fall down the vertical diameter is

24/ -. And this being the same as the time of descent

through any chord terminating at the lowest point, it follows,

that the time of describing a very small circular arc ending

at the lowest point, is to that of the descent down its chord,
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as -W - to 2 \/ -'. i. e. as tt to 4, or as the circumference2^ g y g
of a circle to four times its diameter.

From the last equation it also appears, that if two pen-

dulums of different lengths are set to vibrate in small circular

arcs, the times shall be as the square roots of the lengths
;

or the lengths as the squares of the times : i. e. inversely as

the squares of the numbers of vibrations performed by the

two pendulums in the same time. Wherefore, n denoting

the number of vibrations made in a given time, /A r shall be

a constant quantity : i. e. the same for all pendulums vibrat-

ing in small circvdar arches, at the same part of the surface

of the earth. Accordingly, given the length of the pendu-

lum, and the number of vibrations made by it in a given

time, the length of a second's pendulum is thereby known.

For let r' be the length of the given pendulum, and r that of

the second's pendulum ; also, let n' be the number of the

vibrations made by the former in n seconds, we have n^.r=.

n'". /
«'^. /; whence, r=—^.

n'

Hence, also, knowing the daily or weekly loss or gain of

a pendulum clock, the correction to be made in the length of

the pendulum is immediately ascertained. For let w be the

number of seconds in a day or in a week, and n±dn the

number shown by the clock; there is n\=: (n±clny.r'zz

n^r±2n.d>i.r. omitting the third term of the square of

n^dn, as being inconsiderable with respect to the second.

This equation gives w^(r

—

r):=z ±2}i.dn,r , or r— r'-=. ± r';

i. e. the correction of the length of the pendulum is had by

multiplying that length into a fraction, whose numerator is

twice the error in time, and whose denominator is the time in

which it had accumulated.

The equation shews that /—/ is positive or negative,
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as the clock gains or loses ; and that the pendulum is to be

lengthened or shortened accordingly.

5. Besides the advantages derived from the pendulum

for the measurement of time, we obtain from it the readiest,

as well as the most precise method of satisfying our in-

quiries relative to some of the most important subjects in

Physical Science.

Thus, the equation T—tt \/ -, exhibiting the depend-

ence of any one of the quantities t, r, and ,«• on the remain-

ing two, suggests the mode of finding whether the accele-

rating force of gravity acts alike on all terrestrial substances,

or with an intensity which is different for the different spe-

cies of substances. Now in the same part of the earth,

pendulums of equal lengths are found to be perfectly

isochronous, however different the kinds of matter of which

they consist. This fact is ascertained with the greatest

precision : for whilst two pendulums are suffered to descend

together, if there were the smallest difference in the times

of their vibrations, this difference, after a number of vibra-

tions, would be multiplied by that number, and would

thereby become plainly perceptible; the pendulums not

moving in the corresponding points of their paths, i. e. the

rods not remaining parallel. The experiment, therefore,

shows that when the lengths are equal, the times are pre-

cisely equal ; and the result being the same, however the sub-

stances be varied, it follows, that all are equally accelerated

by gravity ; or that this force acts on all bodies, in proportion

to their quantities of matter.

The equation T= 7r y^- gives gzz —^. If the pendu-

lum vibrates seconds, t is unit ; and / denoting the length

of such a pendulum, the equation is g=7r-l, which expresses

the velocity generated by gravity in one second, by the

space which would be described with that velocity continued
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uniformly for that time. The space through which a body

falls from rest in one second is one-half of this, or jr^;^;

which shows that the space described in one second, by a

body falling freely from a state of rest, is to half the length

of the second's pendulum, in the duplicate ratio of the peri-

phery of a circle to its diameter.

The foregoing expressions require only the substitution

of their numerical values for tt and /. Now in these lati-

tudes, I is found to be 39.14 inches. Wherefore, substitut-

ing this number for /, and for tt its value, viz. 3.14159, the

value of^ will be 32.19 feet : and the space described by a

body falling freely from rest, will be 16.09 feet, or nearly 16

feet and one inch.

But the force of gravity, though constant in the same place,

is not of the same intensity at all parts of the earth's surface.

In Sect. 5. Art. 3. it has been shewn, that the effective force

of gravity is diminished from the poles to the equator, by the

centrifugal force. Hence it follows, that if the earth were a

fluid mass, the columns extending from the centre to the

surface would vary in length ; those nearer to the plane of

the equator rising, to balance by their greater mass, those in

which the effective gravity is greater. There is then a fur-

ther change of the effective gravity arising from figure. It

is shewn by the writers on Physical Astronomy, that the

figure, which the earth would thus assume, would be an

oblate spheroid; and that in proceeding from the equator

towards the pole, the increment of gravity on the surface of

a homogeneous body of this figure would vary as the square

of the sine of latitude : L e. according to the same law as

the increment immediately due to the centrifugal force.

Wherefore, g denoting the effective gravity at the equator,

and mo, the whole of the excess of that at the poles, the

increment at any latitude, X, would be wiosin.^X; and the

effective gravity at that latitude would be
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g—G{l-\-m sin.^X).

From this equation the value of m is known when the

ratio of £r to g is found : and this is the ratio of the lengths

of two isochronous pendulums, of which, one vibrates at the

latitude X, and the other at the equator. Wherefore, I and

L being those lengths, the equation is

As it may not be convenient to find the length of the

pendulum at the equator, l is to be exterminated; for which

purpose, a second equation will be requisite. Wherefore,

putting I' for the length of a second's pendulum at any other

latitude A', there is, in like manner, l'— l{1 -^in sinrX) ; and

- -. . . /' l+msin.-X' x\n ^^ •

by division -7-= V-; -
—

itt"- Which gives
•^

I l+wisin.-A

I'-l

Isin.'^X'— I'&in.-X

The number of vibrations performed in a given time can

be observed with more ease and precision than the length of

the pendulum : and the lengths of isochronous pendulums

being as the squares of the numbers of vibrations made by the

same pendulum in a given time, at those different latitudes,

the formula may be written thus :

n"-—n'

w-sin.^A — w sin. A

Wherein, n and w' denote the numbers of the vibrations made

in a given time by the same pendulum, at the latitudes A

and A'.

By making 7/z:?^+ f//7, and neglecting the terms which

are inconsiderable with respect to the rest, the formula be-

comes

_ 9.dn 'Mn

~'w(sin.''^A'— sin.^A)~wsin.(A'+A)sin.(A'— A)

Experiments conducted on these principles give w^yif
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Shewing that the difference of gravity at the equator and

the poles is the 191st part of the equatorial gravity.

The pendulum by giving the value of 7n, gives also the

ellipticity of the earth, i. e. the difference of the equatorial

and polar semidiameters divided by the former. It is proved,

indeed, by the writers before referred to, that if the earth

were of uniform density, the ellipticity would be ^ of the

fraction expressing the ratio of the centrifugal force to gra-

vity at the equator : and that the same would also be the

value of m; i. e. q denoting the centrifugal force at the equa-

tor divided by gravity, and e the ellipticity, there would be

ezz^q::zm. Now, 5'=7r^> wherefore, ^q=-2^j, for the

value of (? or m. This is Newton's discovery.

The supposition of a uniform density is in the highest

degree improbable ; and as the value of m depends on the

constitution of the earth, with respect to the density of its

interior parts, the value of m, found on that supposition, is

not to be regarded even as an approximation to the truth.

But Clairaut has shewn, that according to whatever law the

density may vary from the surface to the centre, the above

value of e and m, found on the supposition of a uniform den-

sity, is an arithmetical mean between the real values of those

quantities : i. e, that

e+ m=.lq.

substituting in this equation for m and q their values, we have

The value of e can, indeed, be discovered by several

other methods, but not with the same facility, or certainty of

its accuracy. The most obvious of those methods is that by

the measurement of the meridional ares ; and the result ob-

tained by the most accurate of these measurements is -^j-^.

The ellipticity deduced by Laplace from the observed mag-

nitude of two of the lunar inequalities is g^_.

Clairaut has shown, that for a density increasing towards

the centre, the value of e would be less, and consequeinly,.



OF THE SIMPLE PENDULUM. S^fi

that of m greater than ^q, or ^Ij ; that for a uniform density

there would be e= ^q; and for a density infinite at the

centre, e~ ^. Accordingly, for the same limits, there would

be mr=.^q and m^z^q. The values found by observation

are between those limits, and, therefore, show that the den-

sity of the earth increases towards the centre : a conclusion

antecedently probable, and further confirmed by experi«

raents made on the attractions of mountains.

6. Hitherto the arch of descent has been regarded as in-

definitely small. To deduce its value generally we must sub-

rdz
stitute for ds its value — -, in the equation

— ds
dt —

and we find

dt
— r.dz

This equation cannot be integrated in finite terms. To
expand it into a series, let the quantity under the radical

sign be multiplied, and divided by 2>-^. This changes the

equation to

dt-ly -. .- X —7=.
^ g Vz'z-z' >y/i_

2̂r

Developing the factor ( 1 — ^ ) into the series

l +i-|:+i-f-^+M.|.-|^+&c. we have

dt

The terms to be integrated are of the form %- ^ '

Z.
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the exponents m being the natural numbers beginning with

cipher. Wherefore, putting the several integrals,

C —z'^.dz C z^-^.dz

J Ts^fF- '"" i7sr1i= •'"-' '""',

? ~dz
\ .

^
"=A^, the time of the entire vibration will be

-='/^-^.+4(;^)».+i.f(^)\+ )

*•-* Wl ^3+ &- \ )
Each of the terms of this series after the first, is derived

from the preceding term : for,

^Vzz — z^ m *" "^ 2m ^ ^ zz~z^'

These integrals are to be taken between 2;= s', and2;=0'

and at each of these limits, the first term of the second

member vanishes. Wherefore,

e -z^.dz _ ^
(2m-l) C ~^'^-\dz

J y/^^-z" ~^ 2m J "^ z'z~z'
'

This formula exhibits the dependence of each of the in-

tegrals on the one preceding. Wherefore, all are known

when the first, viz. Aq, or \ - , is known. But
^ "^ z'z — z^

— d^ ( 2z— z\
, ,

: = arc COS.
—

-,— . which, taken from z =z 2',

\/zz — z^ \ z J

C •— dz
z = 0, is \ — —TT. Wherefore, making m suc-

S

to , .. ,

cessively, 1, 2, 3, 4, &c., we have

A,=
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Making these substitutions in equation (1), it becomes

This series, proceeding according to the powers of

—, always converges, inasmuch as z' is less than 2r : and

it converges the more rapidly, the smaller the quantity

-7—. If the arc is very small, the first term will suffice :

2r

which gives T= 7r V -, the same conclusion to which we

arrived by taking the arcs for their chords. Unless the arc

of vibration is very considerable, the two first terms will

z
suffice : of which, the second, called the correction, is -—

.

or

Denoting the semi-angle by 0, rO is the arch whose verse

sine is z' ; and this arch being confounded with its chord,

, . , r .u r.u ^ z u . . . „ ,

there is z'z=. —;— :=—--. {/.p. and -—=.-—, givmff tor the

corrected value of the time of the vibration,

7. If the curve in which the body is constrained to move

be the cycloid, having its axis vertical, the relation between

s and ~ is expressed, generally, by the equation,

s'^—4 az.

in which a is the diameter of the generating circle. Let /

denote the arc corresponding to the ordinate z', and let

2 '2

— , — be substituted for z and z', in the expression
4a 4a

V 2g{z'— z) ; we then have
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The expression for the time is derived from the equation

— ds_ A/2a ^*
~ ~ ^ —' Jindt-

which, by integration, gives

t = V — . arc cos. = -, .

£• V sj

This requires no correction; since for ^ = 0, there is s=.s',

and therefore arc (cos. = -, j
r= 0.

At the lowest point of the arc, * vanishes, and arc

(cos.=:0) = -. Wherefore the time of the descent to this

point is expressed by the equation ^ = ^ \/ — And if t

denote the time of the entire vibration

g

The time of vibration, therefore, is independent of the

magnitude of the arc described ; and the property of

tautochrcr,is7n, which belongs to the circle, only when the

arcs of vibration are indefinitely small, holds universally for

the cycloid.

The velocity and time may now be represented by a geo-

metrical construction in the same way as in Sect. 2. Art. 7.

Thus in (Fig. 148.) U being the whole arc of vibration, let a

tangent be drawn at v the lowest point, and let a circle,

I'v'l'. be described, whose centre is v, and radius \l' equal

to the cycloidal arc \L Then, if ym' is taken from the

centre, equal to the arc'v?;<, the ordinate erected at w/ or
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= V \l''^— Y7u- — V \l'' — \'i/r — V s'^—s'-. Wherefore,

iv S-"^ s'— A - V ^.m'q. Accordingly, the ve-
^ 2a ' ^a

locity at any point, m, varies as mq, the ordinate of the

circle raised at the corresponding point of its diameter.

And wm being the cosine of the arch I'q, to the radius v/',

V —

1 • I -5 \ wccl'q _,„ /Of,
there is arc [ cos. =i - I =—~ . V> hence, t = a/ 1— .

(s\ A / 2a arc I'q , , . , , , „ ,
COS. — -\ — y — . -T-^. showing that the time of the

sJ ^ v^g
movement from I, to any point, m, varies as the circular

arch I'q, cut off by the ordinate mq.

Owing to the property of tautochronism, which has been

shown to belong to the cycloid, it has been supposed, that

a pendulum made to oscillate in this curve, was peculiarly

fitted for the regulation of the movements of clock work.

Induced by this supposition, the mathematicians of the se-

venteenth century have bestowed more than ordinary atten-

tion on the properties of this curve: and though their

labours on this subject have not been rewarded by the

attainment of the proposed end, it must be admitted, that

they have materially contributed to the advancement of ma-

thematical science.

The method of causing a pendulous body to move in anv

given curve, is naturally suggested by the generation of a

curve from its evolute. The evolute of a cycloid consists of

two semi-cycloids, equal to the halves of the given cycloid,

or involute, and having their vertices at the extreme points

of its base. Thus, (Fig. 148.) the semi-cycloids oa, ob,

equal to bv, av, and similarly placed, shall constitute the

evolute of the cycloid avb. Accordingly, a body may be

made to vibrate in a given cycloid, by placing two semi-

cycloidal plates, each equal to half the given cycloid in the
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positions shewn in the figure ; and then suspending the

body by a flexible string whose length is ov, or twice the

axis of the cycloid. For as the string applies itself alter-

nately to the plates oa, ob, the body shall always be found

in the curve avb.

But for the regulation of the movements of clock work,

it is not requisite that the pendulum should vibrate in the

arc of a cycloid : neither is the contrivance, whereby it is

made to move in that curve, fitted to insure tautochronism.

For the point at which the string parts from the cycloidal

plate is the temporary centre of motion. Consequently, the

part which at any instant hangs freely, together with the

appended weight, is to be regarded as the vibrating body at

that instant; rejecting that part of the string whose motion

is prevented by the cycloidal plate. The part of the pen-

dulum which hangs freely, being variable both in figure and

weight, the point at which it may be supposed to be concen-

tred, or, as it is named, the centre of oscillation is not neces-

sarily an invariable point of the substance of the pendulum.

Consequently, the contrivance, however well fitted to cause

any given point of the body to move in a cycloid, is not

fitted to give this motion to the ever varying centre of oscil-

lation. For these and other reasons the circular arc is in-

variably preferred.

8. It is a problem of some interest to determine whether

the property of tautochronism, which has been found

to belong to the cycloid, is possessed exclusively by that

curve.

The time of descent in any curve to the lowest point is

ds
found by integrating the equation dtzz. i between

\ 2g{z'~ss)

the limits z= z, and ^= 0. Wherefore, if that time be

denoted by t', there is

'__r~' ^*
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And in order that the curve may possess the property of

tautochronism, the value of this integral must be indepen-

dent of z', the ordinate of the initial arc. We are then to

inquire what is the relation of s and z, which will fulfil this

condition.

Let s be supposed to be developed according to the as-

cending powers of z, so that

in which the coefficients and exponents are indeterminate.

It is evident then, in the first place, that the exponents a,

€, J, &c. are all greater than cipher, since s and z vanish

together. Differencing this expression, and substituting

the value of ds in the formula given above

a—l(lr

Jo y/2g{z'—z)

or, making z=:z'u,

•&c.

,_ ^,a—if»l uf^—'^du
,

-
t—aaz n — hfcr.y

in which there will be as many terms as in the development

of s. Now, in order that this expression should be inde-

pendent of -:', the coefficient of / in one of these terms must

be cipher, and all the other terms must vanish. We must

have, therefore,

—

1

2*a=i.

And since the exponents S, 7, &c. are all positive, as well

as the definite integrals taken between the Hmits 0, 1, the

other terms cannot vanish unless the coefficients b, c, &c.

vanish ; so that there is

b-0, c=0, &c.

and the equation of the curve is reduced to

s— azh.



380 DYNAMICS. SECT. Vll.

which is the equation of the cycloid. The cycloid therefore

is the only plane curve possessing the property of tautochro-

nism.

9. On comparing the time ofdescent down an indefinitely

small arc of a circle, terminating at the lowest point with

that down its chord, it was found (Art. 4.) that the latter

is to the former as the circumference of a circle to four times

its diameter. From this example it appears, that the time

of descent from one point to another, not in the same ver-

tical, is not the shortest, for the shortest line that can be

drawn through those points ; and it becomes a problem to

find the line of swiftest descent.

Let A and b be the two points, and awzb the curve of

swiftest descent from the one to the other, (Fig. 149.) Then,

if two other points are taken in this curve, as m and m , the

intercepted arc mhm also must be that of swiftest descent

from one of those points to the other. For, let it be sup-

posed that any other arc, as mem , is described in a lesser

time than the arc mhm \ the velocity at m being that due to

the vertical height au , is the same for both ; and, therefore,

the body would take the same time to describe the remaining

arc m'B, by whatever course it arrives at m. Wherefore,

the difference of the times of describing the whole arcs

Amhm'^, and Amcm'E, shall be that of describing the parts

mhm , mem , which are not coincident. Accordingly, the

time of descent through the arc Amcm'^, would be shorter

than that of the descent through Ambm'B, contrary to the

supposition. If, then, the latter arc is that of swiftest de-

scent between its extreme points, the same property must

helong to each of its parts as mhm'. As this inference is in-

dependent of the magnitude of that part, mm' may be sup-

posed indefinitely small : and the body arriving at jn, with a

velocity due to the vertical height aw, must describe the arc

7nhm' in a less time than any other arc between the limits

m and m'.
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To express this condition, let nn be divided at the point

e into two equal parts dz\ then putting mi^z, mnzzy,

hm— s, the velocity at m shall be ^^2^^, and the time taken

ds
to describe mh or ds shall be . In like manner, put-

\\x\g ke— z-[-dzzzz , he—y, and pJi — s-\-ds—s\ the time of

describing the arc hm or (//, shall be ,

" — . And the

time taken to describe the whole arc mm shall be

ds ds'
+

The condition requires that this should be a minimum : i. e,

less than for any other curve that can be drawn betw^een the

points m and m, i. e.

^f ds ds' \
0.

The character S denotes the variation of the position of a

point from one curve to another ; differing in this respect

from the character d, which denotes the change of position

in the same curve. In the present instance, z, z' are inde-

pendent of those variations ; being the same whether the

cuvxe is mbm or 7nc?n'. Therefore, §2=: 0, dz' — Q. Accord-

, S.ds ^.ds' r\ rt 1 ^ , o o -

i"gly' —1 h -y-r= 0. But ds—{dz- + dirY, and because dz
\/z V~

has no variation, ^.ds= ^dz'-{-dyr=~l^^-'^^-
Vdz'-^dif ds

And in like manner, S.ds'zz- '

''
. Therefore,

ds

dyXdy dj/Ml_
dsy/z '^ ds'V^'

~ ^^

Now, whatever be the curve described between the

points m, m, the difference between the ordinates at those
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points is constant, i. e. dy-\-dy is a constant quantity:

wherefore, ^[dij-\-cli/)—0. i.e. S.c/y=—S.c///', which changes

equation (2) to

dji dy' _^
ds^ z ds V z

The second term of this equation being what the first be-

comes, when the point m is changed for the point h, the

equation expresses the same thing as d ( ):^0. Where-
\dss/z/

fore, -—^-—= c. But -^ is the sine of the ansle which the
</sV~ ds ^

arc ds makes with the axis of z. And where the arc is

horizontal, this angle is right ; and, therefore, its sine=l.

Wherefore, putting a for the unknown abscissa of the point

where the tangent is horizontal, there will be c =: —;

—

Whence

dy 1 % A /^= 77:;' °^:7;=V;dsy/z \J a ds ^ a

Eliminating dy between this and the equation ds^-::^dy'^-\-dz^,

there is ds — dz'x/ . 'Whence, s-=i —2y/ a[a—z)-\-c.

For *z=0, there is z — Q. Wherefore, c'=:2«, and

s:=i2a—2^a{a— z).

This is the equation of a cycloid, the arc s being

measured from the horizontal base, and a being the

axis.

To find a, the axis of the cycloid, or the diameter of its

generating circle, let a cycloid be described on the base ad,

of any length, measured from the point a, on the horizontal

line AY : and let this curve intersect the right line ab at k.
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Then drawing kd, and from b the parallel be, ae shall be

the base equal to ira.

This construction is founded on the principle, that all

cycloids are similar curves. Such are all curves defined by

the same equation, provided that equation involves but one

constant quantity.
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SECTION VIII.

OF MOTION CONSTRAINED BY A SURFACE.

1. The case of motion restrained by a surface, is to be

treated much in the same way as that of motion restrained

by a hne. The difference of conditions will, however, create

some difference in the theory: for which reason, it seemed

expedient to reserve this part of the subject for a distinct

consideration.

The fundamental equations are those already given in

Sect. 6. Art. 1. And the expressions for the time and velocity

are derived from them by the method employed in that arti-

cle. But if it is desired to express the relation between the

time or the velocity, and one of the coordinates, there being

but one equation of the surface, it will be necessary to use a

second equation to be obtained by eliminating n between two

of the equations (1). By this proceeding, the cosines are

not made to reappear, inasmuch as they may be expressed

by the co-efficients of dx, dy, dz, in the differential equation

of the surface. That equation being represented generally

by ldx-\-mdy-\-ndz= 0. gives

COfi,ff—
.

—
. cos.W =

cos.t/ = , - *
V/2+ wi-^ + «-^

Whereby the three equations, (1), become

* See Lardner's DifTeiential and Integral Calculus.
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-— :=Y-f N.

—

-
dt' V /2 + m- 4- n"-

--^^z+N.
V l^+ iri^ + w'

Multiplying the first of these hy dx, the second by dy, and

the third by dz, we have, as before,

dx.d^x-\-dii.d^il-\-ds.(^z , , , . , / n— j.y^^ —i^.dx-\-x.dij-\-L.dz. (a)

From which we get the expressions for the time and velo-

city, as in Sect. 6. Articles 3 and 4, with the other conse-

quences there derived, relative to those quantities.

A second independent equation is obtained by eliminating

N between any two of the fundamental equations. Thus,

multiplying the first by m, and the second by /, and then

subtracting one from the other, we have

m.d^x — l.d^y , ,,.——-, =mx — Iy. (b)
di- ^ '

By means of this and of the equation of the surface, two

-of the coordinates may be eliminated from equation (a), and

t or V thereby expressed as a function of one of the co-

ordinates only.

The trajectory itself is not given; but by eliminating dt

between the equations {a) and (i), we get an equation, which,

with that of the surface, exhibiting the relations of the co-

ordinates, furnish the two equations of the trajectory.

% The expression for the pressure is found by adding

the three fundamental equations multiplied by I, m, n, re-

ds^
spectively; and substituting for dt- its value, viz. -^. By

v

this process we get

2c
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_ 1)^ LdP^x + m.<Py + n.d^z Ix 4- »«y + n'Z

This is the reaction ; to which the pressure on the surface is

equal and opposite.

Instead of applying to this formula, the pressure may be

conveniently derived from the forces r and— . In the use of

which method, it is to be observed, that when the motion is

restrained by a surface, the reaction at any point of the tra-

jectory is in the perpendicular to the surface : and as there

is but one normal at each point of the surface, the forces

R and —, are to be reduced to this direction. Wherefore,
P

putting a, a' for the angles made by the normal with the di-

rection of R, and with that of the radius of the circle of cur-

vatureatthe same point, the pressure is R.cos.aH .cos. a'.

P

3. Some important conclusions are to be derived by con-

sidering the other components of the same forces. Where-

fore, let the three axes be the normal to the surface, the

tangent to the curve, and a perpendicular to both at the

same point, which will be in the plane tangent to the surface.

t;2

The forces r and— , resolved according to the normal, con-

stitute the pressure already considered. In the tangent to

v
the curve the force— has no effect ; and the force R, re-

P
solved in that direction, exerts no pressure, the effect of this

resolved force being altogether expended in changing the

velocity. The sum of the two forces reduced to the third

axis is cipher : otherwise, the pressure would not be perpen-

dicular to the surface. Accordingly, putting y, y for the

angles made by the directions of the forces r and— , with the
P

third axis, this condition is expressed by the equation
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R.COS.'y ^ .COS.7 =0. (c)

This equation will serve to determine the inclination of

the plane of the osculating circle to the constraining surface

at each point. For the tangent to the trajectory is the in-

tersection of the plane of the osculating circle and the tan-

gent plane : and the angle -y' being contained by two lines

in those planes, and perpendicular to their intersection, is

that by which the inclination of those planes is measured.

When R=0, the last equation gives cos.7'zi:0, oryziOO".

Which shows, that when the body is set in motion by an im-

pulse, and not afterwards solicited by any moving force, the

plane of the osculating circle is, at every point, perpendicular

to the constraining surface.

The same thing would appear by supposing the con-

straining surface to be polygonal. In passing from one face

to another, the body is deflected by a force perpendicular to

that on which it enters : and as its motion on this face is

compounded of that in the preceding, and of that due to the

reaction, it follows, that the two contiguous elements of its

path are in a plane perpendicular to the face containing the

second of those elements. The same thing is to be under-

stood of every two contiguous elements of the path de-

scribed on the polygonal surface. And the observation being

extended to the limiting curved surface, it is inferred that

the radius of the circle of curvature of the trajectory is every

where perpendicular to the surface.

This being the exclusive property of the shortest Hue

that can be drawn on the surface, between two given points,

it follows, that if a body moves on a curved surface, un-

solicited by any accelerating or retarding force, the course

it takes between any two points of its path, is that of the

shortest line that can be drawn on the surface between those

points. But this inference is not limitetl to the case of
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iirrO. For if this were a tangential force, such as the force

of friction^ or the resistance of a fluid medium, the angle y
would be right, and cos.y^rO. In which case, equation (c)

equally gives cos.y'= 0. or, ^'= 90".

It is scarcely requisite to observe, that when RzrO. in

which case the velocity is constant, the pressure is every

where reciprocally proportional to the radius of curvature.

4. To exemplify this theory, let a body influenced by

the force of gravity receive an impvdse communicating to it

the velocity v, and let the motion be restrained by a surface

of revolution whose axis is vertical.

Putting r for the radius of the circle described by any

point of the generating curve, and ^ for the abscissa; the

equation of that curve will be of the form jxh + qdrz^O.

The normal at any point of the surface being in the plane of

the generating curve passing through that point, the re-

action of the surface may be resolved into two, of which one

is in the vertical, and the other in the direction of r, or per-

pendicular to the axis of revolution. Putting / for the arc

of the generating curve, measured from the vertex, these

resolved forces are N.-7-,. and — n.-t-,. Of which the latter
as as

is again resolved into — n.-^,. -. — n.-^,. -. in the directions
as r as r

of X and y respectively. Accordingly, the fundamental

equations are

df
~

' ds" r

dht dz 7/ y f
»

rPz dr

Eliminating N from the two first of these equations, we
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2/ dbOij ' ' oc d li

get ^-^ —'-—^= 0. and by integration, y.dx — x.dy=

celt, or putting w for the angle contained between r and the

axis of a:,

r'^dn) zz cdt. {e)

This equation shows that the areas projected on a horizontal

plane are proportional to the times.

Equation («) becomes in this case,

dx.d^x-\-dy,d'^y-\-d%.d^z
^^-T^— = —mh.
dt^

^

or,

d^M±cll±df)_
dt-

^

which, by integration, gives

dx I (/?/ —|—d^
yr, = — 2gz-{-c. or, v^= — 2gz-{-c.

Putting z' for the height of the point of projection, the

value of c will be expressed by the equation c= v"^-{-2gz'.

Wherefore, v^= v"^-\-2g{as'—z). Or putting // for the height

due to the velocity v, it is

v'=2g{h'+z'-z). if)

The path of the body shall be ascertained by find-

ing an equation between w and ;;-. And for this, we have

dx^-{-dif-\-dz- r. /T ' \ 1 / o 7 ,

j-:^
zr 2g\li -\-z — z). ana cat = v. du). between

which, dt being eliminated, there is

c\dx'-^dy''+ dz'') = 2r^g{/i'+x'- z)doj\

Moreover, dx'^-\-dy- is the square of the element of the arc

described by the moving point, when projected on the plane

of xy. Its value, therefore, is dr'-^-r-dw^. Also, r=fz,
given by the equation of the generating curve ; and d^—pdr

:

wherein, p denotes the tangent of the inclination of the ele-
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merit of the generating curve to the horizon. Making these

substitutions, the equation is

Whence,

d..=
^VT+P'-d^^_

. ^g^

and

c p^ 2g{fa)\h'+z'~z)~c''

Expanding the second member of this equation, and inte-

grating any number of the terms, there is found an approxi-

mate value of t, as a function of z.

If the apsides are sought, we have only to make
dz— =0. or 2g{fzf{h'^z'-.'z)-c'-Q, and to solve this

equation for z.

To derive the expression of the pressure from the equa-

tions [d), the first of those equations is to be multiplied by

—x.dz . , ,
— y.dz , . 1 . T , dr

-T—, the second by —'-rr-, and the third by -r-,, and
rds r.ds "^ ds

then adding, we have

_ r.dr. d^z— dz{x.d^.v -{-y. d^y) dr~
r.ds .df"

^' ds'

ds
And as dt=— , the equation is

_ v"^ [r.dr.d^z—dz{x.d^a:+ y.dh/)] dr

To perceive the agreement of this formula, with the

rule already given in Art. 2., it is to be observed, that

x^-\-y^ — '>''> twice differenced, gives x.d^x-\-7/.dr^y—r.d'r-{-

dr'^—dx'—di/'f which is reduced by the equations dz'-^dr"^
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-ds'\ dx^-\-dt/+ds''=d^ to x.d'x+ i/d''i/-r.(Pr-\-ds"'-ds\

Wherefore,

v"" {r{dr.d:'z~dz.d'r)-[-dz(ds'~dP)'\ dr

ds^ r.ds' ^ ^ ds'

Further, p being put for the radius of curvature of the

generating curve at any point, its vahie is given by the

ds^
"^^^"*^"" ^ - drA~d.,dV

Wherefore,

_^ cJf_, o {ds--ds"') dz dr
^^ p" ds''

'^'''
ds' r.ds'^^'ds"

In this expression, we find the velocity resolved into

two, viz. v.-r- J according to the tangent of the generating
ds '^ ^ too

y/ds^—ds'^
curve ; and v. , according to the tangent of the

(ZS

circle described by a point in that curve. The square of the

former divided by p' is the centrifugal force arising from

that velocity : and this force is directed in the normal.

^2 (els-—dp)—
P5

—

- is the centrifugal force, arising from the velocity
r ds~

o o J

reduced to the tangent of the circle. The direction of this

is that of r, the radius of that circle ; and being multiplied

dz
by -7-,, it is reduced to the normal. Wherefore, the sum of

ds

the two first terms in the value of n is the expression of the

centrifugal force reduced to the normal. The last term is

the force of gravity reduced to the same direction. Whence

it appears, that the whole expression is equivalent to R.cos.a-f-

o

^ f— . COS. aJ.

P

5. If it is required to find the velocity of projection, in

order that the motion of the body should be horizontal, it is
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to be observed that r and ^ are then to be treated as con-

stant' quantities. This, however, will not affect the differen-

tials in the second members of the equations {d) which are

there employed only hypothetically to denote the angles.

This being observed, the third of those equations becomes

=—^-f-N.y-/. Eliminating n between this and the first of

those equations, we have —-tr- =:—£(•.-.— =z —«,£f.-. Buta:=:^
dt- ^ r dr ' ^ r

r. cos.w. And this twice differenced for r constant, gives

(V'x r. COS. w.d(t)^
T-< 1 1 ,^ d''^' i-7--= r^ . xLiquatmff these values 01 —r^, we have

dt^ dt- ^ ^ dt'

dti)^ A 1 ^'d(ii
, . . ., >^

^''-jji^Jg- And as —-zzv, the equation is v'=2).g.r. Or

putting for n^ its value, viz. '2gh, it is

Now JO is the tangent of the angle made by the element

of the generating curve with the horizontal ordinate r ;

wherefore, pr is the subtangent, i. e. the portion of the axis

between the ordinate r and the tangent : and therefore, //,

the height due to the velocity of projection, is half the sub-

tangent. If the body is projected with this velocity in the

tangent of a horizontal section of a surface of revolution,

whose axis is vertical, it shall continue to move in that sec-

tion.

The time of the revolution, or the periodic time of a body

. , . . . ^TT.r 27rr Stt . / r „ ^

moving in this section, is Tr= ~
,

-n:—--.y -. l>ut
V yfpgr V g P

-, is the subnormal, i. e. the portion of the axis contained
P
between the normal and the horizontal ordinate r. Where-

fore putting n for this line, we have
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T-=z—--.vn.
Vg

If the surface is that of a paraboloid, the subtangent is

bisected at the vertex ; wherefore, the velocity for circular

motion is that due to the abscissa, or the portion of the axis

cut ofFby the plane of the circle.

If the surface is that of a sphere, the velocity of projec-

tion for circular motion near the vertex or lowest point of

the segment, as in the case of the paraboloid, is that due to

the abscissa or height above that point. But this height

increasing, the subtangent increases much more rapidly, be-

coming infinite for a height equal to the radius ofthe sphere.

Wherefore for motion in a horizontal plane passing through

the centre of the sphere, the velocity of projection should be

infinite.

The time of the revolution given by the equation

Tzz——-.-i/w, varies as the square root of the portion of the
Vg

vertical diameter between the centre of the sphere, and the

plane of the circle described by the movement.

The condition of a body moving on the surface of a

sphere, is the same as if it were suspended from the centre

by a cord equal to the radius : the tension of the cord

then taking the place of the pressure, and the reaction of the

fixed point that of the constraining surface. Such is called

a conical pendulum. And as the time of oscillation in a

cycloid or small circular arc, was given by the equation

T—ttA/-. it is evident that a conical pendulum shall
^ g

perform its circular revolution in a time equal to that

of the double oscillation of a pendulum whose length is

equal to n, or the distance of the plane of the circle, de-

scribed by the conical pendulum, from the point of sus-

pension.

2d
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In the case of horizontal movement on a surface of

revolution, the pressure on the surface is at once given

by the third of the equations (d) ; which for -T-2-= 0.is

ds
N=rg.— . The coefficient of g, in this equation, is the se-

cant of the angle made by the element of the generating

curve with the horizon ; and this angle is equal to that

between the normal and vertical axis. Wherefore, in the

case of the horizontal movement of a body influenced by

gravity, the pressure on the surface is the weight mul-

tiplied by the secant of the angle contained between the

normal and axis.

It seemed proper to show how these conclusions respect-

ing the horizontal motion of a heavy body on a surface of

revolution described round a vertical axis, were to be ob-

tained from the general theory of constrained motion. But

the problems respecting such motions are readily solved,

by equating the force of gravity and the centrifugal force,

both reduced to the direction of the tangent to the

generating curve : or which is the same thing, by resolv-

ing the force of gravity into two forces, of which, one is

in the direction of the normal, and the other in that of the

radius of the circle ; and equating this last to the centri-

fugal force.

Putting fi for the normal, and n, as before, for the sub-

normal, the force in the direction of the former is -.£«•. This
n ®

which is the pressure on the surface, is equilibrated by the

J-

reaction. The central force is -.g. And this is equal and

opposite to the centrifugal force. The expression for this

force, already given, is — . or —-. Wherefore, -^zz-.s.
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or li-=.—, i. e. the height due to the velocity of projection is

equal to half the subtangent ; which is the conclusion before

obtained, respecting the velocity of projection required for

the horizontal motion of a heavy body, on a surface of revo-

lution about a vertical axis.

END OF VOLUME THE FIRST.
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